Orthogonales Komplement

Orthogonales Komplement

Ein Komplement oder ein komplementärer Unterraum ist im mathematischen Teilgebiet der linearen Algebra ein möglichst großer Unterraum, der einen vorgegebenen Unterraum nur im Nullpunkt schneidet. Der gesamte Vektorraum wird dadurch gewissermaßen in zwei unabhängige Teile zerlegt.

Inhaltsverzeichnis

Definition: Komplement eines Untervektorraums

Es sei V ein Vektorraum über einem Körper K und U ein Unterraum von V. Dann heißt ein Unterraum W komplementär oder ein Komplement zu U, wenn die Bedingungen

  • U\cap W=\{0\}

und

  • U + W = V

erfüllt sind. Dabei steht U + W kurz für

\{u+w\mid u\in U,w\in W\}.

Man sagt dann auch: V ist die innere direkte Summe von U und W und schreibt V=U\oplus W. Da V dann auch kanonisch isomorph zur äußeren direkten Summe von U und W ist, lässt man die Attribute „innere“ oder „äußere“ meist weg.

Eigenschaften

  • Ist W ein Komplement von U in V so lässt sich jeder Vektor v\in V eindeutig als
v = u + w
mit u\in U und w\in W schreiben.
  • Für die Dimensionen der entsprechenden Untervektorräume gilt
 \dim V = \dim U + \dim W.
  • Ist W ein Komplement zu U, so ist auch U ein Komplement zu W.
  • Die Einschränkung der kanonischen Projektion V\to V/U auf W ist ein Isomorphismus, siehe Faktorraum.

Definition: Orthogonales Komplement

Es sei V ein Vektorraum über einem Körper K, auf dem eine symmetrische oder alternierende Bilinearform oder eine hermitesche Sesquilinearform gegeben ist. Für einen Unterraum U\subseteq V heißt

U^\perp:=\{v\in V\mid\forall u \in U: \langle u,v\rangle=0\}

das orthogonale Komplement oder der Orthogonalraum von U in V. Man beachte, dass es im Allgemeinen kein Komplement von U im oben definierten Sinne ist. Der Dualitätssatz besagt jedoch, dass, falls V endlichdimensional und s sowohl auf V als auch auf dem Unterraum U nicht ausgeartet ist, V = U \oplus U^\bot gilt.

Die letzte Bedingung ist beispielsweise für positiv definite Skalarprodukte auf reellen oder komplexen Vektorräumen erfüllt.

Orthogonales Komplement in Hilberträumen

Ist V ein Hilbertraum und s das Skalarprodukt des Hilbertraums, so ist das orthogonale Komplement eines Unterraumes U ein Komplement seines Abschlusses \bar U, d.h.

V=\bar U\oplus U^\perp.

Das orthogonale Komplement ist stets abgeschlossen, und es gilt

(U^\perp)^\perp=\bar U.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Komplement (lineare Algebra) — Ein Komplement oder ein komplementärer Unterraum ist im mathematischen Teilgebiet der linearen Algebra ein möglichst großer Unterraum, der einen vorgegebenen Unterraum nur im Nullpunkt schneidet. Der gesamte Vektorraum wird dadurch gewissermaßen… …   Deutsch Wikipedia

  • Orthogonalraum — Ein Komplement oder ein komplementärer Unterraum ist im mathematischen Teilgebiet der linearen Algebra ein möglichst großer Unterraum, der einen vorgegebenen Unterraum nur im Nullpunkt schneidet. Der gesamte Vektorraum wird dadurch gewissermaßen… …   Deutsch Wikipedia

  • Komplementärraum — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Bitte hilf mit, die Mängel dieses… …   Deutsch Wikipedia

  • Definit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Negativ definit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv definit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv definite Matrix — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv semidefinit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Positiv semidefinite Matrix — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

  • Semidefinit — Definitheit ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Er beschreibt, welche Vorzeichen reelle quadratische Formen annehmen können, die durch Matrizen oder allgemeiner durch Bilinearformen erzeugt werden.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”