Phasenübergang

Phasenübergang

Ein Phasenübergang bzw. eine Phasentransformation ist in der Thermodynamik die Umwandlung einer oder mehrerer Phasen in andere Phasen. Eine graphische Darstellung der Stabilitätsbereiche der Phasen in Abhängigkeit von den Zustandsvariablen wie Druck, Temperatur, chemischer Zusammensetzung und magnetischer Feldstärke liefern Phasendiagramme. In diesen Diagrammen sind die Stabilitätsbereiche durch Phasengrenzlinien begrenzt, an denen die Phasenübergänge ablaufen.

Inhaltsverzeichnis

Klassifizierung

Phasenübergänge können zwischen festen, flüssigen und gasförmigen Phasen auftreten. Für Phasenübergänge zwischen bestimmten Aggregatzuständen gibt es spezielle Bezeichnungen:

In einigen Stoffsystemen verschwinden oberhalb eines kritischen Punktes, der durch eine kritische Temperatur und einen kritischen Druck gekennzeichnet ist, die Phasengrenzflächen zwischen flüssiger und gasförmiger Phase. Damit sind Flüssigkeit und Gas unter diesen Bedingungen nur noch eine Phase, die "überkritisch" genannt wird. Somit kann es dort auch kein Verdampfen und Kondensieren mehr geben. Ebenso kann es in einigen Stoffsystemen einen Tripelpunkt geben, an dem sowohl eine feste, als auch eine flüssige und eine gasförmige Phase im Gleichgewicht miteinander stehen und dementsprechend alle sechs erstgenannten Formen des Phasenübergangs gleichzeitig ablaufen.

Grundsätzlich unterscheidet man nach der Ehrenfest-Klassifikation Phasenübergänge unterschiedlicher Ordnung. Dazu betrachtet man thermodynamische Größen wie Volumen, Enthalpie oder Entropie in Abhängigkeit von einer (oder mehreren) Variablen, meist der Temperatur. Bei einem Phasenübergang n-ter Ordnung sind diese Größen und ihre Ableitungen stetig, erst die n-te Ableitung ist unstetig (bei mehreren Variablen mindestens eine der n-ten Ableitungen). Da diese thermodynamischen Größen im Zusammenhang mit makroskopischen Eigenschaften wie zum Beispiel der Magnetisierung oder der Deformation eines Kristallgitters stehen, kann man auch letztere zur Klassifikation von Phasenübergängen heranziehen (Landau-Theorie), sogenannte Ordnungsparameter. Entsprechend spricht man auch bei unstetigen Änderungen der makroskopischen Ordnungsparameter von Phasenübergängen 1. Ordnung und entsprechend bei kontinuierlichen Änderungen von höherer Ordnung.

Von besonderer Bedeutung ist die Unterscheidung in Phasenübergänge 1. Ordnung und 2. Ordnung. Beispielsweise ist reines Wasser bei Normaldruck und einer Temperatur von Null Grad Celsius, also an seinem Schmelzpunkt, entweder eine Flüssigkeit oder ein Feststoff. Zur Überführung vom festen in den flüssigen Zustand muss zusätzlich Wärmeenergie (in Form von latenter Wärme) zugeführt werden, ohne dass es zu einer tatsächlichen Temperaturerhöhung kommt. Da es dabei zu einer Unstetigkeit in der spezifischen Wärme kommt, ist das Schmelzen von Eis ein Phasenübergang erster Ordnung.

Ein ferromagnetischer Stoff verliert hingegen ab einer kritischen Temperatur (der Curie-Temperatur) seine ferromagnetische Ordnung und wird paramagnetisch, ohne dass dabei zusätzlich latente Wärme auftritt. Dieses Verhalten kennzeichnet einen kontinuierlichen Phasenübergang oder in diesem Fall einen Phasenübergang 2. Ordnung. Betrachtet man dagegen bei einem Ferromagneten die Magnetisierung als Funktion des Magnetfeldes, so tritt bei Vorzeichenumkehr desselben ein Sprung in der Magnetisierung auf, entsprechend einem Phasenübergang 1. Ordnung.

Neben dieser grundsätzlichen Einteilung gibt es noch eine Reihe weiterer Unterscheidungen in speziellen Anwendungsgebieten.

Nach der strukturellen Klassifikation unterscheidet man in der Mineralogie zwischen diskontinuierlichen (=rekonstruktiven), martensitischen und kontinuierlichen Phasenübergängen. Diskontinuierliche Phasenübergänge sind durch den Bruch chemischer Bindungen charakterisiert. Ein Beispiel ist die Umwandlung von Graphit in Diamant. Bei martensitischen Phasenübergängen wird das Kristallgitter geschert. Ein Beispiel ist die Umwandlung von γ- zu α-Eisen. Martensitische Phasenübergänge werden nochmals in athermale und isothermale Phasenübergänge gegliedert. Im Unterschied zu ersteren ist der Umwandlungsgrad bei letzteren zeitabhängig. Kontinuierliche Phasenübergänge sind nur mit einer Ordnung der Kristallstruktur verbunden. Man unterscheidet zwei Subtypen: Displazive und Ordnungs-Unordnungs-Phasenübergänge. Bei ersterem kommt es zu einer Verschiebung oder Rotation der Atompositionen (zum Beispiel bei der Umwandlung von Hochquarz in Tiefquarz), bei letzteren zu einer Ordnung mehrerer auf verschiedene Atompositionen statistisch verteilter Atome, so dass jede Position nur noch mit einer Atomsorte besetzt ist. In beiden Fällen kann es zum Auftreten großräumiger Periodizitäten kommen, welche die Gitterstruktur überlagern. Man bezeichnet diese als inkommensurable Strukturen.

Die kinetische Klassifikation unterteilt Phasenübergänge nach ihrer Reaktionsgeschwindigkeit in Phasenübergänge nullter Ordnung, bei denen die Reaktionsgeschwindigkeit konstant ist, Phasenübergänge erster Ordnung, bei denen sie von der Konzentration der Ausgangsphase abhängt und Phasenübergängen zweiter (dritter) Ordnung, bei denen sie von den Konzentrationen von zwei (drei) Ausgangssubstanzen abhängt.

Strömungsdynamisch wird unterschieden bei Geschwindigkeits-Übergängenen, wo Strömungseigenschaften schlagartig und massiv ändern. Zum Beispiel die Änderung wichtiger Werte wie Widerstand und Auftrieb bei Gasen und Flüssigkeiten. Ein wichtiger Bereich ist der kritische Übergang von unterkritisch zu überkritisch.

Beispiele

Phasenübergänge sind oft mit der Änderung bestimmter Materialeigenschaften verbunden, zum Beispiel:

Theorie

Die Theorie kontinuierlicher Phasenübergänge geht von einem Ordnungsparameter aus (zum Beispiel der Magnetisierung bei der Umwandlung eines Ferromagneten in einen Paramagneten). Bei kontinuierlichen Phasenübergängen geht der Ordnungsparameter bei Annäherung an den Umwandlungspunkt kontinuierlich gegen Null (dagegen springt er an einem Phasenübergang 1. Ordnung) und die Korrelationslänge divergiert (bei einer Umwandlung 1. Ordnung bleibt sie endlich). Es lassen sich sehr unterschiedliche Arten von kontinuierlichen Phasenübergängen in Universalitätsklassen zusammenfassen, was letztlich erneut auf die Divergenz der Korrelationslänge zurückzuführen ist. Diese Klassen können durch einige wenige Parameter charakterisiert werden. Beispielsweise verschwindet der Ordnungsparameter in der Nähe des kritischen Punktes, z. B. als Funktion des Temperaturabstandes zum Übergangspunkt, in der Form eines Potenzgesetzes. Der zugehörige Exponent, der kritische Exponent, ist ein solcher Parameter.

Der Zusammenhang zwischen grundlegenden Symmetrien der jeweiligen Phasen und den Werten dieser Parameter ist im Rahmen der Statistischen Physik in den letzten Dekaden ausführlich theoretisch untersucht und auch in einer Vielzahl von Experimenten sowie in Computersimulationen überprüft worden. Bei theoretischen Beschreibungen von Phasenübergängen wird mitunter die Landau- oder Mean-Field-Theorie benutzt. Dabei werden jedoch kritische thermische Fluktuationen vernachlässigt, die in der Umgebung des Übergangs eine wesentliche Rolle spielen können (und beispielsweise in der kritischen Opaleszenz beobachtet werden). Die Landau-Theorie kann trotzdem als Ausgangspunkt genauerer Theorien (von der Skalentheorie von Pokrowski und Patashinski bis hin zur epsilon-Entwicklung von K.G. Wilson und M.E. Fisher) wertvolle erste Einsichten vermitteln. Dies ist insbesondere von Kenneth G. Wilson erkannt worden, der 1982 den Nobelpreis für bahnbrechende Arbeiten über kontinuierliche Phasenübergänge erhielt. Wilson ist einer der entscheidenden Pioniere der Renormierungsgruppentheorie, die berücksichtigt, dass bei kontinuierlichen Phasenübergängen die kritischen Fluktuationen auf vielen Längenskalen in selbstähnlicher Form stattfinden. Analoge Theorien finden heute in vielen Bereichen der Physik und Mathematik Anwendung.

Bedeutung für die Mineralogie

Das Wissen über die physikochemischen Bedingungen, bei denen Phasenübergänge ablaufen, erlaubt Mineralogen Rückschlüsse über die Entstehungsgeschichte von Gesteinen. Wenn ein Gestein unter hohe Drücke und Temperaturen gerät, kommt es in vielen Fällen zu einer Phasenumwandlung. Unter der Voraussetzung, dass die anschließende Abkühlung so rasch erfolgt, dass die Umkehrreaktion aufgrund der bei tiefen Temperaturen kaum noch möglichen Diffusion nicht mehr stattfindet, kann man davon ausgehen, dass die bei hohen Temperaturen und Drücken stabilen Minerale "eingefroren" werden und so an der Erdoberfläche erhalten bleiben. So sind Aussagen darüber möglich, welche Temperaturen und Drücke ein Gestein im Laufe seiner Genese "gesehen" hat. Beispiele hierfür sind die Phasenübergänge zwischen Andalusit, Sillimanit und Disthen im Bereich der Aluminosilikate, die Umwandlung von Graphit in Diamant und von Quarz in Coesit oder Stishovit. Das durch experimentelle Mineralogie erworbene Wissen über Phasenübergänge erklärt auch das rheologische Verhalten des Erdmantels: Das Eisen-Magnesiumsilikat Olivin wandelt sich in 410 km Tiefe in den in der β-Spinell-Struktur kristallisierenden Wadsleyit um, der sich seinerseits in 520 km Tiefe weiter in den in der γ-Spinell-Struktur auftretenden Ringwoodit umwandelt (siehe auch die Artikel 410-km-Diskontinuität und 520-km-Diskontinuität). Dabei kommt es zu keinerlei chemischen Veränderungen, sondern nur zu einer Änderung der Kristallstruktur. Am Beispiel der Umwandlung von Coesit in Stishovit kann man gut erklären, warum es zu einer Phasenumwandlung kommt: Unter normalen Bedingungen ist Silizium von vier Sauerstoffatomen umgeben, unter hohen Drücken rücken die Atome jedoch dichter zusammen, so dass die Koordination durch sechs Sauerstoffatome energetisch günstiger ist.

Bedeutung für technische Prozesse

Während des keramischen Brandes wandelt sich bei einer Temperatur von 573 °C Quarz in Hochquarz um. Dabei ändert sich das Volumen. Bei einer zu großen Heizrate kann dies zum Zerspringen der Keramik führen. Deshalb wird die Heizrate in diesem Temperaturbereich gedrosselt. Im Bereich der Konservierung von Kunstobjekten werden die Gegenstände oft kühl und trocken gelagert und auch ausgestellt. Bei Objekten aus Zinn ist dies nicht richtig, weil dieses unterhalb von 15 °C in eine andere Modifikation übergeht, deren äußeres Erscheinungsbild wenig attraktiv ist und die als Zinnpest bezeichnet wird. Für die Kunstgeschichte ist es interessant zu wissen, dass früher oft das Blaupigment Azurit für die Darstellung des Himmels verwendet wurde. Im Lauf der Jahrhunderte ist dieses jedoch in die thermodynamisch stabile Form Malachit umgewandelt worden, welche grün ist. Dadurch ist der Himmel auf alten Bildern manchmal grün. Bei der Stahlerzeugung sind mit der Umwandlung der Eisenmodifikation Ferrit in Martensit Veränderungen des Gefüges verbunden, die für die Eigenschaften des Stahls von großer Bedeutung sind. In zweidimensionalen Materialien, z. B. in dünnen magnetischen Schichten, kann es nur unter eingeschränkten Bedingungen langreichweitige Ordnung und damit einen Phasenübergang geben. Dieser interessante Aspekt wird im Mermin-Wagner-Theorem (nach N. David Mermin und Herbert Wagner) behandelt und ist auch experimentell untersucht worden.

Paraffine besitzen eine besonders große Volumenänderung um etwa 30 % beim Phasenübergang von fest nach flüssig. Dieser Hub kann für die Konstruktion von Aktoren genutzt werden.

Siehe auch

Literatur

  • H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press (1971)
  • W. Gebhard, U. Krey, Phasenübergänge und kritische Phänomene, Vieweg (1980)
  • Phase Transitions and Critical Phenomena, Band 1-20 (1972-2001), Academic Press, Hrsg: C. Domb und M.S. Green bzw. J.L. Lebowitz
  • M.E. Fisher, Renormalization Group in Theory of Critical Behavior, Reviews of Modern Physics, Band 46, S. 597-616 (1974)
  • Mats Hillert: Phase equilibria, phase diagrams and phase transformations - their thermodynamic basis. Cambridge Univ. Press, Cambridge 2008, ISBN 0-521-85351-6
  • Pierre Papon (et al.): The physics of phase transitions - concepts and applications. Springer, Berlin 2006, ISBN 978-3-540-33389-0
  • Vadim V. Brazhkin New kinds of phase transitions - transformations in disordered substances. Kluwer Academic, Dordrecht 2002, ISBN 1-4020-0825-2

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Phasenübergang — Pha|sen|über|gang 〈m. 1u; Phys.〉 Umwandlung eines Stoffes von einer Phase in eine andere bei bestimmten Werten von Druck u. Temperatur, z. B. für Wasser beim Siedepunkt, Eispunkt * * * Pha|sen|ü|ber|gang: svw. ↑ Phasenumwandlung. * * *… …   Universal-Lexikon

  • Phasenübergang — fazinis virsmas statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos vienos fazės virtimas kita. atitikmenys: angl. phase change; phase transform; phase transition vok. Phasenübergang, f; Phasenumwandlung, f rus. фазовое… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Phasenübergang — fazinis virsmas statusas T sritis fizika atitikmenys: angl. phase change; phase transform; phase transition vok. Phasenübergang, m; Phasenumwandlung, f rus. фазовое превращение, n; фазовый переход, m pranc. changement de phase, m; transition de… …   Fizikos terminų žodynas

  • Phasenübergang — fazinis virsmas statusas T sritis Energetika apibrėžtis Medžiagos vienos fazės kitimas kita, vykstantis tam tikroje temperatūroje ir atitinkamame slėgyje. atitikmenys: angl. phase transfer; phase transformation; phase transition vok.… …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Sublimation (Phasenübergang) — Phasendiagramm eines „gewöhnlichen“ Stoffes und des Wassers Dunkelgrüne Kristalle …   Deutsch Wikipedia

  • Drei-Phasen-Verkehrstheorie — Die Drei Phasen Verkehrstheorie ist eine alternative Verkehrstheorie begründet von Boris Kerner in den Jahren 1996–2002[1][2][3]. Sie erklärt den Verkehrszusammenbruch und den resultierenden gestauten Verkehr auf Schnellstraßen. Kerner beschreibt …   Deutsch Wikipedia

  • Landau-Theorie — Die Landau Theorie ist in der Physik eine Theorie zur Beschreibung von Phasenübergängen. Sie wird nach dem russischen Physiker Lev Landau bezeichnet. Diese Theorie beruht auf einer polynomiellen Entwicklung der freien Energie als Funktion eines… …   Deutsch Wikipedia

  • Kilojoule pro Mol — Als latente Wärme ( latent lat. für verborgen ) bezeichnet man die bei einem Phasenübergang erster Ordnung aufgenommene oder abgegebene Wärmemenge. Latent heißt sie deshalb, weil die Aufnahme bzw. Abgabe dieser Wärme nicht zu einer… …   Deutsch Wikipedia

  • Latente Energie — Als latente Wärme ( latent lat. für verborgen ) bezeichnet man die bei einem Phasenübergang erster Ordnung aufgenommene oder abgegebene Wärmemenge. Latent heißt sie deshalb, weil die Aufnahme bzw. Abgabe dieser Wärme nicht zu einer… …   Deutsch Wikipedia

  • Latentwärme — Als latente Wärme ( latent lat. für verborgen ) bezeichnet man die bei einem Phasenübergang erster Ordnung aufgenommene oder abgegebene Wärmemenge. Latent heißt sie deshalb, weil die Aufnahme bzw. Abgabe dieser Wärme nicht zu einer… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”