7-Parameter-Transformation

Die Helmert-Transformation (nach Friedrich Robert Helmert, 1843-1917; auch: 7-Parameter-Transformation) ist eine Koordinatentransformation für dreidimensionale kartesische Koordinaten, die in der Geodäsie häufig zur verzerrungsfreien Umrechnung von einem in ein anderes, ebenfalls dreidimensionales System genutzt wird:

XT = C + μRX

  • XT ... transformierter Vektor
  • X ... Ausgangsvektor

Die Parameter sind:

Damit ist die Helmert-Transformation eine Ähnlichkeitstransformation. Sie ist eine Spezialisierung der Galilei-Transformationen, zu denen unter anderem affine und projektive Transformationen gehören; letztere verzerren allerdings die Streckenlängen.

Inhaltsverzeichnis

Berechnung der Parameter

Wenn die Transformationsparameter unbekannt sind, können sie über identische Punkte (also Punkte, deren Koordinaten vor und nach der Transformation bekannt sind) berechnet werden. Da insgesamt 7 Parameter (3 Verschiebungen, 1 Maßstab, 3 Verdrehungen) zu bestimmen sind, müssen zumindest 2 Punkte und von einem 3. Punkt eine Koordinate (z. B. die z-Koordinate) bekannt sein. Damit entsteht ein Gleichungssystem mit sieben Gleichungen und ebensovielen Unbekannten, das gelöst werden kann.

In der Praxis wird man bestrebt sein, mehr Punkte zu verwenden. Durch diese Überbestimmung erhält man erstens eine Kontrolle über die Richtigkeit der verwendeten Punkte und zweitens die Möglichkeit einer statistischen Beurteilung des Ergebnisses. Die Berechnung erfolgt in diesem Fall mit einer Ausgleichung nach der gaußschen Methode der kleinsten Quadrate.

Um numerisch günstige Werte für die Berechnung der Transformationsparameter zu erhalten, werden die Berechnungen mit Koordinatendifferenzen, bezogen auf den Schwerpunkt der gegebenen Punkte, durchgeführt.

Zweidimensionaler Fall

Ein Spezialfall ist die zweidimensionale Helmert-Transformation. Hier werden nur 4 Parameter benötigt (2 Verschiebungen, 1 Maßstab, 1 Verdrehung) und die Ermittlung derselben kann bereits mit zwei identischen Punkten erfolgen; wenn mehr Punkte gegeben sind, erfolgt wiederum eine Ausgleichung.

Anwendung

Die Helmerttransformation wird unter anderem in der Geodäsie angewendet, um Koordinaten der Punkte von einem Koordinatensystem in ein anderes zu transformieren. Damit ist z. B. die Umrechnung von Punkten der regionalen Landesvermessung in das für GPS-Ortungen benutzte WGS84 möglich.

Dabei werden die Gauß-Krüger-Koordinaten x,y plus der Höhe H schrittweise in 3D-Werte umgerechnet:

  1. Berechnung der ellipsoidischen Breite, Länge und Höhe (B, L, H)
  2. Berechnung von X, Y, Z bezüglich des Referenzellipsoides der Landesvermessung
  3. 7-Parameter-Transformation (wodurch sich X, Y, Z fast gleichmäßig um maximal einige hundert Meter ändern und die Strecken um einige mm pro km).
  4. Dadurch werden terrestrisch vermessene Positionen mit GPS-Daten vergleichbar; letztere können - in umgekehrter Reihenfolge transformiert - als neue Punkte in die Landesvermessung eingebracht werden.

Der 3. Schritt besteht in der Anwendung einer Drehmatrix, der Multiplikation mit einem Maßstabsfaktor μ = 1 + m (µ liegt nahe beim Wert 1) und der Addition einer Verschiebung C.

Da die Teiloperationen dieser Transformation allesamt nur kleine Änderungen bewirken, können die Koordinaten eines Referenzsystems B durch folgende Formel aus dem Referenzsystem A hergeleitet werden:

\begin{bmatrix}X\\Y\\Z\end{bmatrix}^B=\begin{bmatrix}c_x\\c_y\\c_z\end{bmatrix}+\begin{bmatrix}1+m&-r_z&r_y\\r_z&1+m&-r_x\\-r_y&r_x&1+m\end{bmatrix}\cdot\begin{bmatrix}X\\Y\\Z\end{bmatrix}^A

wobei die Drehwinkel rx, ry und rz mit ihrem Wert im Bogenmaß einzusetzen sind.

Oder für jede einzelne Komponente:


\begin{matrix}
X_B=c_x+(1+m)\cdot X_A-r_z\cdot Y_A+r_y\cdot Z_A\\
Y_B=c_y+r_z\cdot X_A+(1+m)\cdot Y_A-r_x\cdot Z_A\\
Z_B=c_z-r_y\cdot X_A+r_x\cdot Y_A+(1+m)\cdot Z_A\\
\end{matrix}

Für die Rücktransformation werden alle Parameter mit -1 multipliziert.

Die 7 Parameter werden für die jeweilige Region (Vermessungseparat, Bundesland etc.) mit 3 oder mehr "identischen Punkten" beider Systeme bestimmt. Bei Überbestimmung werden die kleinen Widersprüche (meist nur einige cm) durch Ausgleichung nach der Methode der kleinsten Quadrate ausgeglichen - das heißt, auf die statistisch plausibelste Weise beseitigt.

Standardparametersätze

Gebiet Startsystem Zielsystem cx (Meter) cy (Meter) cz (Meter) m (ppm) rx (Bogensekunde) ry (Bogensekunde) rz (Bogensekunde)
England, Schottland, Wales WGS84 OSGB36 -446,448 125,157 -542,06 20,4894 -0,1502 -0,247 -0,8421
Irland WGS84 Ireland 1965 -482,53 130,596 -564,557 -8,15 1,042 0,214 0,631
Deutschland WGS84 DHDN/Potsdam 2001 -598,1 -73,7 -418,2 -6,7 0,202 0,045 -2,455
Deutschland WGS84 Pulkowo S42/83 2001 -24,9 126,4 93,2 -1,01 -0,063 -0,247 -0,041
Österreich (BEV) WGS84 MGI -577,326 -90,129 -463,919 -2,423 5,137 1,474 5,297
Schweiz WGS84 LV95 -674.374 -15.056 -405.346 0 0 0 0
USA WGS84 Clarke 1866 8 -160 -176 0 0 0 0

Bei den Beispielen handelt es sich um Standardparametersätze für die 7-Parameter-Transformation (oder: Datumstransformation) zwischen zwei Ellipsoiden. Für die Transformation in der Gegenrichtung muss bei allen Parametern das Vorzeichen geändert werden. Die Drehwinkel rx, ry und rz werden manchmal auch als κ, φ und ω bezeichnet. Die Datumstransformation von WGS84 nach Bessel ist insofern interessant, als sich die GPS-Technologie auf den WGS84-Ellipsoiden bezieht, das in Deutschland verbreitete Gauß-Krüger-Koordinatensystem in der Regel jedoch auf den Ellipsoiden nach Bessel.

Da die Erde keine perfekte Ellipsoid-Form hat, sondern als Geoid beschrieben wird, genügt für eine Datumstransformation mit Vermessungsgenauigkeit der Standardparametersatz nicht. Die Geoidform der Erde wird stattdessen durch eine Vielzahl von Ellipsoiden beschrieben. Je nach tatsächlichem Standort werden die Parameter des "lokal bestangleichenden Ellipsoiden" verwendet. Diese Werte können stark von den Standardwerten abweichen, führen jedoch in der Transformationsrechnung in der Regel nur zu Änderungen des Ergebnisses im Zentimeterbereich.

Einschränkungen

Da sie nur einen Maßstabsfaktor kennt, kann die Helmert-Transformation als Ähnlichkeitstransformation nicht verwendet werden für:

Siehe auch

Bezugssystem, Global Positioning System, Galileo, Ingenieurgeodäsie

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Sieben-Parameter-Transformation — Die Helmert Transformation (nach Friedrich Robert Helmert, 1843 1917; auch: 7 Parameter Transformation) ist eine Koordinatentransformation für dreidimensionale kartesische Koordinaten, die in der Geodäsie häufig zur verzerrungsfreien Umrechnung… …   Deutsch Wikipedia

  • Helmert-Transformation — Die Helmert Transformation (nach Friedrich Robert Helmert, 1843 1917), auch 7 Parameter Transformation genannt, ist eine Koordinatentransformation für dreidimensionale kartesische Koordinaten, die in der Geodäsie häufig zur verzerrungsfreien… …   Deutsch Wikipedia

  • Helmert transformation — The Helmert transformation (named after Friedrich Robert Helmert, 1843 ndash;1917; also called a seven parameter transformation) is a transformation method within a three dimensional space. It is frequently used in geodesy to produce distortion… …   Wikipedia

  • Affine Transformation — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Bei einer Koordinatentransformation werden Koordinaten von einem… …   Deutsch Wikipedia

  • Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − …   Wikipedia

  • Lorentz transformation — A visualisation of the Lorentz transformation (full animation). Only one space coordinate is considered. The thin solid lines crossing at right angles depict the time and distance coordinates of an observer at rest with respect to that frame; the …   Wikipedia

  • Denavit-Hartenberg-Transformation — Beispiel einer kinematischen Kette anhand eines Roboters; mit Koordinatensystemen und DH Parametern Die Denavit Hartenberg Transformation (DH Transformation) aus dem Jahr 1955 ist ein mathematisches Verfahren, das auf der Basis von homogenen… …   Deutsch Wikipedia

  • Schnelle Fourier-Transformation — Eine schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei solchen Algorithmen handelt es sich… …   Deutsch Wikipedia

  • Filter-Transformation — Die Filter Transformation dient im Rahmen des Filterentwurfes dazu, elektronische Filter zwischen verschiedenen Filtertypen wie Tiefpassfilter, Hochpassfilter oder Bandpassfilter umzusetzen. Inhaltsverzeichnis 1 Allgemeines 1.1 Tiefpass Hochpass… …   Deutsch Wikipedia

  • Galilei-Transformation — Die Koordinatentransformation von einem Bezugssystem B1 in ein anderes Bezugssystem B2 nennt man Galilei Transformation, wenn sich B2 von B1 nur durch eine räumliche Parallelverschiebung, eine Zeit Translation, eine Drehung oder eine gleichförmig …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”