Banach-Tarski-Paradoxon
Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen.

Das Banach-Tarski-Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die demonstriert, dass sich der anschauliche Volumenbegriff nicht auf beliebige Punktmengen verallgemeinern lässt. Danach kann man eine Kugel in drei oder mehr Dimensionen derart zerlegen, dass sich ihre Teile wieder zu zwei lückenlosen Kugeln zusammenfügen lassen, von denen jede denselben Durchmesser hat wie die ursprüngliche. Das Volumen verdoppelt sich, ohne dass anschaulich ersichtlich ist, wie durch diesen Vorgang Volumen aus dem Nichts entstehen können sollte. Dieses Paradoxon demonstriert, dass das mathematische Modell des Raumes als Punktmenge in der Mathematik Aspekte hat, die sich in der physischen Realität nicht wiederfinden.

Erklärt wird das Paradoxon mathematisch formal damit, dass die Kugelteile dermaßen kompliziert geformt sind, dass ihr Volumen nicht mehr definierbar ist. Man bezeichnet solche Punktmengen als nicht messbar. Sie sind in einem gewissen Sinne unendlich filigran und porös bzw. staubwolkenartig. Die mathematische Existenz solcher Mengen ist nicht selbstverständlich: Zum Beweis der Existenz von nicht messbaren Teilmengen im d-dimensionalen, reellen Raum \R^d benötigt man das Auswahlaxiom oder schwächere Formen davon, die nicht aus der Zermelo-Fraenkel-Mengenlehre herleitbar sind. Das Auswahlaxiom wird zwar von einer überwiegenden Mehrheit der Mathematiker, jedoch nicht von allen, akzeptiert. Messbare Punktmengen hingegen verhalten sich hinsichtlich ihres Volumens additiv.

Die polnischen Mathematiker Stefan Banach und Alfred Tarski führten 1924 einen mathematischen Existenzbeweis und zeigten, dass im Fall der Kugel eine Zerlegung in nur sechs Teile ausreichend sei. Unmöglich hingegen ist ein konstruktiver Beweis im Sinne einer Handlungsanweisung, wie eine Kugel tatsächlich in sechs Teile zu zerschneiden ist, um diese in zwei Kugeln gleichen Volumens zusammensetzen zu können.

In einer allgemeineren Formulierung dieses Satzes können sich Ausgangs- und Endkörper durch einen beliebigen Volumenfaktor unterscheiden und bis auf gewisse Einschränkungen auch beliebige, verschiedene Gestalt besitzen. Die allgemeine Formulierung dieses mathematischen Satzes in Räumen mit drei und mehr Dimensionen lautet:

Sei d \ge 3 eine ganze Zahl und seien X,Y\subset\R^d beschränkte Mengen mit nicht-leerem Inneren. Dann gibt es eine natürliche Zahl n und eine disjunkte Zerlegung X_1, \dots, X_n von X und zugehörige Bewegungen \beta_1, \dots, \beta_n derart, dass Y die disjunkte Vereinigung der Mengen \beta_1(X_1), \dots, \beta_n(X_n) ist.

In der Ebene ist dieser Satz nicht gültig. 1990 konnte Miklós Laczkovich jedoch zeigen, dass dieser Satz für Flächen zumindest in ähnlicher Form gilt. Danach sind zwei gleich große Flächen mit hinreichend glattem Rand ebenfalls zerlegungsgleich. In diesem Sinne ist beispielsweise eine Quadratur des Kreises möglich, wenn auch nicht mit Zirkel und Lineal. Die Anzahl der für eine konstruktive Lösung erforderlichen Teile wurde von Laczkovich auf etwa 1050 geschätzt, wobei die Größen der größeren Teilstücke nach Laczkovich nicht eindeutig festgelegt wurden.

Literatur

  • Leonard M. Wapner: Aus 1 mach 2  −  Wie Mathematiker Kugeln verdoppeln, Spektrum Akademischer Verlag, Heidelberg 2007, ISBN 978-3-8274-1851-7
  • Stefan Banach, Alfred Tarski Sur la décomposition des ensembles de points en parties respectivement congruentes, Fundamenta Mathematica, Bd.6, 1924, S.244-277, Online

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Banach-Tarski — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Banach-Tarski Paradox — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Satz von Banach-Tarski — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Banach — ist der Nachname mehrerer Personen: Ed Banach (* 1960), US amerikanischer Ringer Lou Banach (* 1960), US amerikanischer Ringer Maurice Banach (1967–1991), deutscher Fußballspieler Stefan Banach (1892–1945), polnischer Mathematiker, danach benannt …   Deutsch Wikipedia

  • Tarski — Alfred Tarski in Berkeley Alfred Tarski bzw. ursprünglich Alfred Teitelbaum (* 14. Januar 1901 (nach anderen Quellen: 1902) in Warschau; † 26. Oktober 1983 in Berkeley, USA) war ein polnisch US amerikanischer …   Deutsch Wikipedia

  • Paradoxon — Ein Paradox(on) (auch Paradoxie; Plural: Paradoxa oder Paradoxien; von altgriechisch παράδοξον, von παρα, para, „gegen“, und δόξα, dóxa, „Meinung, Ansicht“) ist ein scheinbar[1] oder tatsächlich unauflösbarer, unerwarteter Widerspruch.… …   Deutsch Wikipedia

  • Satz von Banach und Tarski — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Stefan Banach — ( ˈstɛfan ˈbanax?/i; * 30. März 1892 in Krakau; † 31. August 1945 in Lemberg) war ein polnischer Mathematiker. Er gilt als Begründer der modern …   Deutsch Wikipedia

  • Alfred Tarski — in Berkeley Alfred Tarski bzw. ursprünglich Alfred Tajtelbaum oder Teitelbaum[1] (* 14. Januar 1901 (nach anderen Quellen: 1902) in Warschau; † 26. Oktober 1983 in Berkeley, USA …   Deutsch Wikipedia

  • Paradox — Ein Paradoxon oder Paradox (altgriechisch παράδοξον, von παρα , para – gegen und δόξα, dóxa – Meinung, Ansicht), auch Paradoxie (παραδοξία) und in der Mehrzahl Paradoxa g …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”