Banach-Tarski Paradox

Banach-Tarski Paradox
Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen.

Das Banach-Tarski-Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die demonstriert, dass sich der anschauliche Volumenbegriff nicht auf beliebige Punktmengen verallgemeinern lässt. Danach kann man eine Kugel derart zerlegen, dass sich ihre Teile wieder zu zwei lückenlosen Kugeln zusammenfügen lassen, von denen jede denselben Durchmesser hat wie die ursprüngliche. Das Volumen verdoppelt sich, ohne dass anschaulich ersichtlich ist, wie durch diesen Vorgang Volumen aus dem Nichts entstehen können sollte. Dieses Paradoxon demonstriert, dass das mathematische Modell des Raumes als Punktmenge in der Mathematik Aspekte hat, die sich in der physischen Realität nicht wiederfinden.

Im mathematischen Formalismus wird das Paradoxon damit erklärt, dass die Kugelteile dermaßen kompliziert geformt sind, dass ihr Volumen nicht mehr definierbar ist. Man bezeichnet solche Punktmengen als nicht messbar. Sie sind in einem gewissen Sinne unendlich filigran und porös bzw. staubwolkenartig. Die mathematische Existenz solcher Mengen ist nicht selbstverständlich: Zum Beweis der Existenz von nicht messbaren Teilmengen im d-dimensionalen, reellen Raum \R^d benötigt man das Auswahlaxiom, das zwar von einer überwiegenden Mehrheit der Mathematiker, jedoch nicht von allen, akzeptiert wird. Messbare Punktmengen hingegen verhalten sich hinsichtlich ihres Volumens additiv.

Die polnischen Mathematiker Stefan Banach und Alfred Tarski führten den Beweis 1924 und zeigten, dass im Fall der Kugel eine Zerlegung in sechs Teile ausreichend ist. Für diesen Satz kann es jedoch lediglich einen Existenzbeweis geben, ein konstruktiver Beweis ist nicht möglich.

In einer allgemeineren Formulierung dieses Satzes können sich Ausgangs- und Endkörper durch einen beliebigen Volumenfaktor unterscheiden und bis auf gewisse Einschränkungen auch beliebige, verschiedene Gestalt besitzen. Die allgemeine Formulierung dieses mathematischen Satzes in Räumen mit drei und mehr Dimensionen lautet:

Sei d \ge 3 eine ganze Zahl und seien X,Y\subset\R^d beschränkte Mengen mit nicht-leerem Inneren. Dann gibt es eine natürliche Zahl n und eine disjunkte Zerlegung X_1, \dots, X_n von X und zugehörige Bewegungen \beta_1, \dots, \beta_n derart, dass Y die disjunkte Vereinigung der Mengen \beta_1(X_1), \dots, \beta_n(X_n) ist.

In der Ebene ist dieser Satz nicht gültig. 1990 konnte Miklós Laczkovich jedoch zeigen, dass dieser Satz für Flächen zumindest in ähnlicher Form gilt. Danach sind zwei Flächen, sofern ihr Rand hinreichend glatt ist, ebenfalls zerlegungsgleich, allerdings nur dann, wenn ihre Flächen gleich groß sind. In diesem Sinne ist beispielsweise eine Quadratur des Kreises möglich, wenn auch nicht mit Zirkel und Lineal. Die Anzahl der erforderlichen Teile wurde jedoch von Laczkovich auf etwa 1050 geschätzt.

Weblinks

  • Reinhard Winkler: Wie macht man 2 aus 1? – Herleitung mit den Mitteln der Schulmathematik, in html- und pdf-Version.
  • Eine Kugel ist eine Kugel ist... sind zwei Kugeln?! – Das Paradoxon von Banach-Tarski auf dem Matheplaneten u. A. mit einer Konstruktion der benötigten Zerlegung der Kugel.

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Banach–Tarski paradox — The Banach–Tarski paradox is a theorem in set theoretic geometry which states that a solid ball in 3 dimensional space can be split into several non overlapping pieces, which can then be put back together in a different way to yield two identical …   Wikipedia

  • Paradoxe de Banach-Tarski — En mathématiques, et plus précisément en géométrie, le paradoxe de Banach Tarski est un théorème, démontré en 1924 par Stefan Banach et Alfred Tarski, qui affirme qu il est possible de couper une boule de l espace usuel en un nombre fini de… …   Wikipédia en Français

  • Paradoxe de Banach Tarski — Illustration du paradoxe de Banach Tarski Le paradoxe de Banach Tarski, dû à Stefan Banach et Alfred Tarski, montre qu’il est possible de couper une boule de en un nombre fini de morceaux et de réassembler ces morceaux pour former deux …   Wikipédia en Français

  • Paradoxe de banach-tarski — Illustration du paradoxe de Banach Tarski Le paradoxe de Banach Tarski, dû à Stefan Banach et Alfred Tarski, montre qu’il est possible de couper une boule de en un nombre fini de morceaux et de réassembler ces morceaux pour former deux …   Wikipédia en Français

  • Théorème de Banach-Tarski — Paradoxe de Banach Tarski Illustration du paradoxe de Banach Tarski Le paradoxe de Banach Tarski, dû à Stefan Banach et Alfred Tarski, montre qu’il est possible de couper une boule de en un nombre fini de morceaux et de réassembler ces morceaux… …   Wikipédia en Français

  • Tarski's circle-squaring problem — is the challenge, posed by Alfred Tarski in 1925, to take a disc in the plane, cut it into finitely many pieces, and reassemble the pieces so as to get a square of equal area. This was proven to be possible by Miklós Laczkovich in 1990; the… …   Wikipedia

  • Banach measure — In mathematics, Banach measure in measure theory may mean a real valued function on the algebra of all sets (for example, in the plane), by means of which a rigid, finitely additive area can be defined for every set, even when a set does not have …   Wikipedia

  • Paradox — Ein Paradoxon oder Paradox (altgriechisch παράδοξον, von παρα , para – gegen und δόξα, dóxa – Meinung, Ansicht), auch Paradoxie (παραδοξία) und in der Mehrzahl Paradoxa g …   Deutsch Wikipedia

  • Stefan Banach — Infobox Scientist name = Stefan Banach box width = image width = caption = birth date = Birth date|1892|3|30 birth place = death date = Death date|1945|8|31 death place = nationality = Polish citizenship = Austro Hungarian, Polish, Soviet Union [ …   Wikipedia

  • Alfred Tarski — Infobox scientist name = Alfred Tarski caption = birth date = birth date|1901|01|14 birth place = Warsaw, Poland (under Russian rule at the time) death date = death date|1983|10|26 death place = Berkeley, California fields = Mathematics, logic,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”