Banded Iron Formation

Banded Iron Formation
Bändereisenerz aus Nordamerika, 2,1 Milliarden Jahre alt
Bändereisenerz von Upper Michigan, U.S.A.

Ein Bändererz ist ein eisenhaltiges, marines Sedimentgestein, welches hauptsächlich im Präkambrium abgelagert wurde und das durch metallhaltige Lagen eine charakteristische Schichtstruktur besitzt. Im zur Schichtung senkrechten Schnitt erscheinen die vor allem aus Eisenmineralen bestehenden Schichten als Bänderstruktur, der das Erz im Deutschen wie auch im Englischen (Banded Iron Formation, abgekürzt BIF) seinen Namen verdankt.

Inhaltsverzeichnis

Ursprung

Bändererze sind zu einer Zeit entstanden, in der die Sauerstoff-Konzentration der Atmosphäre und der Meere äußerst gering war. Solche Bedingungen herrschten im Archaikum und Proterozoikum vor 3,8–2,5 und 2,5–1,8 Ga (Milliarden Jahren). Viel später wurden zwischen 750 bis 600 Ma (Millionen Jahren) vor heute und um 450 Ma in begrenztem Maße Bändererze gebildet.[1] Das im Zuge untermeerischer vulkanischer Vorgänge in das Meer abgegebene Eisen sowie möglicherweise das durch verschiedene Ursachen in den freien Verwitterungskreislauf der Erde geratende Eisen wurde nicht wie heute durch den freien Sauerstoff (O2, Dioxygen) in Meer und Atmosphäre sofort oxidiert, sondern konnte sich wegen des in der frühen Atmosphäre der Erde fehlenden O2 in hohen Konzentrationen im Meerwasser anreichern, bis es durch unterschiedliche Vorgänge gebunden wurde und sich in dünnen Schichten am Meeresboden sammelte. Der Prozess verlief zyklisch über einen Zeitraum von mehreren 100 Mio. Jahren, in der der freie Sauerstoff der Atmosphäre und des Meeres stets komplett durch die Oxidation des vorhandenen freien Eisens gebunden wurde. Die Ursachen des zyklischen Verlaufs der Eisenfällung sind nicht bekannt.

Aufbau

Bändererze haben einen geschichteten Aufbau, wobei sich eisenhaltige Lagen mit Hornsteinlagen (engl. chert, mikro-kryptokristalliner Quarz von < 30μm Korngröße) abwechseln. Die in den eisenhaltigen Lagen hauptsächlich auftretende Minerale sind Magnetit (Fe3O4) und Hämatit (Fe2O3). Die einzelnen Lagen sind einige Millimeter bis einige Zentimeter dick und verleihen dem Gestein die namengebende Bänderung. Sie können in vielfacher Wiederholung auftreten, so dass Bändererzformationen Mächtigkeiten (Schichtdicken) von etwa 50–600 m aufweisen können, sie sind damit wirtschaftlich bedeutsame Eisenerzlagerstätten.

Typen

Es werden drei Typen unterschieden:

  • Erstens der Algoma-Typ, der linsenförmig auftritt und mit Vulkaniten und Grauwacken verzahnt ist (Lagerstätten zum Beispiel in Kanada und Australien). Die vulkanische Aktivität war submarin.
  • Zweitens der Superior-Typ, der wegen seiner Entstehung in Schelfgebieten großflächigere Ausdehnungen besitzt. Eine Beziehung zu vulkanischen Aktivitäten ist bei diesem Typ nicht offensichtlich.
  • Drittens der Rapitan-Typ, welcher am Ende des Neoproterozoikums in Zusammenhang mit glazialen Sedimenten (Schneeball Erde) auftritt.

Entstehung

Bändereisenerz aus Krivoy Rog, Ukraine

Die Entstehung der Bändererze wurde intensiv untersucht, sie ist jedoch bis heute nicht abschließend geklärt. Einer der Hauptstreitpunkte ist die Rolle von Bakterien bei der Entstehung der Bändererze sowie die zeitliche Entwicklung der Sauerstoff-Konzentration in Verbindung mit der Frage, ob der Sauerstoff zum Zeitpunkt der Entstehung der Bändererze in ausreichend hohen Konzentrationen in der damaligen Atmosphäre vorhanden war.[2]

Generell wird angenommen, dass das Eisen vulkanischen Ursprungs war und durch Exhalation an den Mittelozeanischen Rücken und entlang von Tiefseegräben dem Meerwasser zugeführt wurde. Die Untersuchung der Verteilung und der Gehalte an Seltenen Erden ergab einen anormal hohen Gehalt an Europium im Gestein, welcher die vulkanische Herkunft bestätigt,[3] ebenso die Nd-Isotopenzusammensetzung der Hornsteinlagen.[4] Gegen die These, dass das Eisen aus der Verwitterung kontinentaler Gesteine stammt, spricht ebenfalls der geringe Gehalt an Aluminium in manchen BIFs und die Tatsache, dass meistens keine klastischen Sedimente wie Tone zusammen mit den Bändererzen auftreten.

Eine Erklärung für die Entstehung der BIFs ist ein Zusammenspiel von biologischer Aktivität und durch vertikale Strömungen in die oberen Wasserschichten und ins Flachwasser gelangtes Eisen.[5] Durch die Sauerstoffproduktion aus der oxygenen Photosynthese der zu dieser Zeit existierenden Cyanobakterien wurde das im Meerwasser gelöste Eisen unmittelbar oxidiert und es bildeten sich schwer wasserlösliche hydroxidische und oxidische Verbindungen des dreiwertigen Eisens (u, a. Eisen(III)hydroxid und Eisen(III)oxihydrate). Diese schwer wasserlöslichen Minerale sedimentierten, durch Wasserabgabe entstanden bei der Diagenese daraus die Minerale Magnetit und Hämatit. Es wird angenommen, dass die Aufnahme des Sauerstoffs durch das im Meerwasser gelöste Eisen immer nur eine gewisse Zeit andauerte, nämlich so lange, bis das verfügbare Eisen aufgebraucht war und der frei werdende Sauerstoff nicht mehr durch Eisen gebunden wurde. Dadurch soll eine für die Cyanobakterien schädliche Sauerstoffkonzentration entstanden sein, die zum Absterben der Bakterien führte [5]. Nachfolgend kam es dann zur Sedimentation der Hornsteine. Diese sind anscheinend durch direkte abiotische Ausfällung von Siliziumdioxid und durch Siliziumdioxid abscheidende Organismen gebildet worden.

Eine weitere Möglichkeit der Oxidation zweiwertigen Eisens ist die Tätigkeit anoxygen phototropher Bakterien, die mit Licht als Energiequelle Biomasse aus Kohlendioxid und Wasser erzeugen, indem sie zweiwertiges Eisen als Reduktionsmittel verwenden und dieses dadurch zu dreiwertigem Eisen oxidieren, dabei aber keinen Sauerstoff (Dioxygen, O2) bilden [6]. Modellrechnungen haben ergeben, dass eine verhältnismäßig dünne Schicht freischwebender derartiger anoxygen phototropher Bakterien ausreicht, um alles gelöste Eisen im Meerwasser zu oxidieren und somit auszufällen.[2]

Auch eine abiotische Entstehung wird für möglich gehalten: Ionen des zweiwertigen Eisens werden durch UV-Strahlung und Blaulicht bis zu einer Wellenlänge von etwa 400 nm zu dreiwertigen Eisen-Ionen oxidiert, wobei die Elektronen auf Wasserstoff-Ionen übertragen werden und damit molekularer, elementarer Wasserstoff (H2) entsteht: 2 Fe2+ + 2 H+ → 2 Fe3+ + H2. Die dreiwertigen Eisen-Ionen bilden zusammen mit Wasser Hämatit oder zusammen mit zweiwertigen Eisen-Ionen und Wasser Magnetit.[7]

Die Entstehung der nach langer Zeit am Ausgang des Proterozoikums auftretenden Bändererze ist ebenfalls nicht völlig geklärt. Einerseits werden sie als Beleg für die Schneeball Erde-Hypothese gesehen: Die vollständige Eisbedeckung der Ozeane ist bei den damals schon hohen Sauerstoffkonzentrationen in Meer und Atmosphäre die Bedingung dafür, dass das Meerwasser anoxisch wird und gelöstes Eisen in großer Menge aufnehmen kann. Das Eisen wird mit dem Schmelzen des Eises oxidiert und scheidet sich als Sediment ab [1]. Andererseits werden sie als Bildung von metallreichen, anoxischen Meereswässern erklärt. Ihr Metallgehalt ist vulkanischen Ursprungs, ihr Bildungsort sind Rift-Becken tektonischen Ursprungs, deren bodennahen Wasserschichten oft anoxisch sind.[8]

Vorkommen

Die regionale Verbreitung der Bändererze ist entsprechend dem proterozoischen Alter an die Schildgebiete der Kontinente gebunden, in denen Gesteine dieses Alters vorkommen. Bändererze sind von enormer wirtschaftlicher Bedeutung. Ihre Vorräte an Eisen werden auf 150 Mrd. Tonnen geschätzt, was bei einem Verbrauch von rund einer Milliarde Tonnen pro Jahr für eine lange Reichweite der Eisenreserven spricht.

Große Vorkommen mit einem Alter von 2,6-2,1 Ga (Mrd. Jahren) befinden sich im Transvaal, Südafrika. In Australien sind große Vorräte in den 2,7-2,4 Ga alten Bändererzen der Hamersley Range vorhanden. In Krivoi Rog in der Ukraine sind die Bändererze 2,6-1,9 Ga alt, etwa gleich alt sind die im Staat Minas Gerais, Brasilien, und im Labradortrog in Kanada [9].

Neben dem Eisen treten untergeordnet auch andere Metalle in den Bändererzen auf, welche ebenfalls eine gewisse wirtschaftliche Bedeutung besitzen.

Literatur

  • Anthony M. Evans: Erzlagerstättenkunde, S. 90f., 257ff., 316f. Ferdinand Enke Verlag, Stuttgart 1992. ISBN 3-432-99801-5

Einzelnachweise

  1. a b Paul F. Hoffman, Daniel P. Schrag: The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, S. 129-155, 2002.
  2. a b Andreas Kappler, Claudia Pasquero, Kurt O. Konhauser, Dianne K. Newman: Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, In: Geology; Bd. 33, Nr. 11, 2005, S. 865-868
  3. Klein, Cornelis: Some precambrian banded iron-formations (BIFs) from around the world : Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. The American mineralogist, 2005, Bd. 90, Nr.10, S. 1473-1499 Abstract
  4. Horstmann, U.E. et al.: Rare earth elements and Nd isotopic compositions in banded iron-formations of the Griqualand West Sequence, Northern Cape Province, South Africa. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Band 152, Heft 2-4, S. 439-465. Abstract
  5. a b Mike Strickler: Banded Iron Formation, University of Oregon (en.)
  6. F. Widdel, S. Schnell, S. Heising, A. Ehrenreich, B. Assmus, B. Schink: Ferrous iron oxidation by anoxygenic phototrophic bacteria, In: Nature Vol. 362, 1993, S. 834-836
  7. Christian de Duve: Ursprung des Lebens - Präbiotische Evolution und die Entstehung der Zelle. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford 1994, ISBN 3-86025-187-2, S. 142-143.
  8. N. Eyles, N. Januszczak: ’Zipper-rift’: A tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. In: Earth-Science Reviews. Bd. 65, Nr. 1-2, 2004, S. 1-73 (pdf 4Mb). Abstract: doi:10.1016/S0012-8252(03)00080-1
  9. Very Large Fe-Deposits, Columbia University in the City of New York, Lamont -Doherty Earth Observatory

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Banded iron formation — Banded iron formations (also known as banded ironstone formations or BIFs) are a distinctive type of rock often found in primordial (Precambrian) sedimentary rocks. The structures consist of repeated thin layers of iron oxides, either magnetite… …   Wikipedia

  • banded-iron formation — ▪ geology       chemically precipitated sediment, typically thin bedded or laminated, consisting of 15 percent or more iron of sedimentary origin and layers of chert, chalcedony, jasper, or quartz. Such formations occur on all the continents and… …   Universalium

  • Iron ore — Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in colour from dark grey, bright yellow, deep purple, to rusty red. The iron itself is usually found in the …   Wikipedia

  • Iron — Fe redirects here. For other uses, see Fe (disambiguation). This article is about the chemical element. For other uses, see Iron (disambiguation). manganese …   Wikipedia

  • Formation (stratigraphy) — A formation or geological formation is the fundamental unit of lithostratigraphy. A formation consists of a certain number of rock strata that have a comparable lithology, facies or other similar properties. Formations are not defined on the… …   Wikipedia

  • Channel-iron deposits — (CID) are iron rich fluvial sedimentary deposits of possible Miocene age occupying meandering palaeochannels in the Early to Mid Tertiary Hamerlsey palaeosurface of Western Australia. Examples are also known from Kazakhstan. The deposits are… …   Wikipedia

  • Mesabi Iron Range — Die Mesabi Range liegt westlich des Lake Superior und nördlich von Duluth Bergleute bei der Arb …   Deutsch Wikipedia

  • sedimentary rock — Rock formed at or near the Earth s surface by the accumulation and lithification of fragments of preexisting rocks or by precipitation from solution at normal surface temperatures. Sedimentary rocks can be formed only where sediments are… …   Universalium

  • Slave craton — which is one of the oldest dated rock units on Earth at 4.03 Ga. The crust of the Slave craton is thought to have amalgamated during a 2.69 Ga collision between a proto Slave western basement complex, known as the Central Slave Basement Complex,… …   Wikipedia

  • Precambrian time — Interval of geologic time from с 3. 8 billion years ago, the age of the oldest known rocks, to 544 million years ago, the beginning of the Cambrian Period. This interval represents more than 80% of the geologic record and thus provides important… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”