Trapezregel

Trapezregel

Die Trapezregel beschreibt ein mathematisches Verfahren, wie man das Integral einer Funktion f(x) im Intervall [a,b] numerisch annähert (Numerische Quadratur).

Dazu ersetzt man die Fläche unter der Kurve y = f(x) im gegebenen Intervall durch ein Trapez oder mehrere gleich breite Trapeze.

Es gibt verschiedene Möglichkeiten zur Bestimmung dieser Trapeze: Man kann die Kurve zum Beispiel näherungsweise durch eine Sehne zwischen den Funktionswerten an den Stellen a und b ersetzen. Dies führt zur Sehnentrapezformel. Man kann aber auch in der Mitte des Intervalls die Tangente an die Funktion legen und erhält dann die Tangententrapezformel.

Inhaltsverzeichnis

Beispiel

 J(f) = \int_{0}^{2}3^{3x-1} \, \mathrm{d}x = \frac{728}{9 \ln(3)} = 73{,}6282396649\dots

Mit Hilfe der im Folgenden erklärten Trapezformeln soll dieses bestimmte Integral näherungsweise berechnet werden.

Sehnentrapezformel

Sehnentrapez
J(f) = \int_a^b f(x)\, \mathrm dx = Q(f) + E(f)

Das Trapez wird gebildet aus der Grundlinie [a,b] (dem Intervall auf der x-Achse), den senkrechten Geraden [a,f(a)] und [b,f(b)] sowie der Sehne als Verbindungsgerade zwischen f(a) und f(b). Diese Sehne ersetzt die Kurve f(x), x\in[a,b].

Die Sehnentrapezformel ergibt sich aus dem Flächeninhalt des beschriebenen Trapezes:

Q(f) = \frac{b-a}2\bigl(f(a)+f(b)\bigr).

Diese Formel sowie die folgenden können aus der „allgemeinen Quadraturformel für eine Teilfläche“ hergeleitet werden.

Ist f zweimal stetig differenzierbar in [a,b], dann gilt für das Restglied E(f) die Abschätzung

\left|E(f)\right| \le\frac{(b-a)^3}{12} \max_{a\le x\le b} \left|f''(x)\right|.

Ist f zusätzlich noch reellwertig, dann gilt mit einer Zwischenstelle ζ aus [a,b]

E(f) = -\frac{(b-a)^3}{12} f''(\zeta).

Anschließend an das obige Beispiel:

Q(f) = \frac{2-0}2 \bigl(f(0) + f(2)\bigr) = \frac{730}3 = 243{,}\bar{3}

Zusammengesetzte Sehnentrapezformel

J(f) = \int_a^b f(x)\,\mathrm dx = Q(f)^{(n)} + E^{(n)}(f)

Um das Integral noch besser annähern zu können unterteilt man das Intervall [a,b] in n nebeneinanderliegende gleich große Teilintervalle der Länge h=\tfrac{b-a}n. In jedem Teilintervall wendet man die Sehnentrapezformel für die einzelnen Teilflächen an und addiert danach die entstandenen Näherungen. Damit erhält man die summierte (bzw. zusammengesetzte) Sehnentrapezformel:

 Q(f)=h\left(\frac 12 f(a) + \frac 12 f(b) + \sum_{i=1}^{n-1} f(a+ih)\right)

mit

 h = \frac{b-a}n.

Die Fehlerabschätzung für das Restglied lautet

\left|E(f)\right|\le\frac{(b-a)}{12} h^2 \max_{a\le x\le b} \left|f''(x)\right|

bzw. für reellwertige Funktionen mit einer Zwischenstelle ζ aus dem Intervall [a,b]

E(f)= -\frac{(b-a)}{12} h^2 f''(\zeta).

Anschließend an das obige Beispiel: Sei die Schrittweite h = \tfrac 13 und damit n = 6. Dann ist

\begin{align}
  Q^{(6)}(f) &= \frac 13\left(\frac 12f(0) + f\left(\frac 13\right) + f\left(\frac 23\right) + f(1) + f\left(\frac 43\right) + f\left(\frac 53\right) + \frac 12 f(2) \right)\\
             &= \frac{728}9 = 80{,}\bar{8}
\end{align}

Tangententrapezformel

Tangententrapez

Die obere Seite des Trapezes wird hier gebildet, indem man in der Mitte des Intervalls [a,b] eine Tangente an f(x) legt. Die restliche Seiten sind die Grundlinie [a,b] (das Intervall auf der x-Achse) und die senkrechten Geraden an den Stellen a und b bis zur Tangente.

Die Tangententrapezformel ergibt sich aus dem Flächeninhalt des beschriebenen Trapezes:

 Q(f) = (b - a) \ f\left(\frac{a + b}{2} \right)

Diese Formel - und auch die folgenden - kann man herleiten aus der „Allgemeinen Quadraturformel für eine Teilfläche“ (siehe Numerische Quadratur).

Damit lässt sich das Integral darstellen als

 J(f) = \int_{a}^{b}f(x)\, \mathrm{d}x = Q(f) + E(f)

Ist f(x) zweimal stetig differenzierbar in [a,b], dann gilt für das Restglied E(f) folgende Abschätzung (siehe Numerische Quadratur):

\left| E(f) \right| \le \frac{(b-a)^3}{24} \max_{a\le x \le b} {\left| f''(x) \right|}

Ist f(x) zusätzlich noch reellwertig, dann gilt mit einer Zwischenstelle ζ aus [a,b]:

 E(f) = \frac{(b-a)^3}{24} \cdot f''(\zeta)

Anschließend an das obige Beispiel:

 Q(f) = (2-0) \cdot f(1) = 18

Zusammengesetzte Tangententrapezformel

Um das Integral noch besser annähern zu können, unterteilt man das Intervall [a,b] in n nebeneinanderliegende gleich große Teilintervalle der Länge h. In jedem Teilintervall wendet man die Tangententrapezformel für die einzelnen Teilflächen an und addiert danach die entstandenen Näherungen. Damit erhält man die summierte Tangententrapezformel:

 Q(f)=h \cdot \sum_{i=1}^n f\left(a \ + \ h \cdot \frac{2i - 1}{2}\right)

mit

 h = \frac{(b - a)}{n}

Die Fehlerabschätzung für das Restglied lautet:

\left| E(f) \right| \le {(b - a) \over 24} \ h^2 \max_{a\le x \le b} {\left| f''(x) \right|}

bzw. für reellwertige Funktionen mit einer Zwischenstelle ζ aus dem Intervall [a,b]:

 E(f)={(b - a) \over 24} \cdot h^2 \cdot f''(\zeta)

Anschließend an das obige Beispiel: Sei die Schrittweite   h = \tfrac 13 und damit n = 6

Q^{(6)}(f) = \frac{1}{3} \cdot \left(f\left(\frac{1}{6}\right) + f\left(\frac{3}{6}\right) + f\left(\frac{5}{6}\right) + f\left(\frac{7}{6}\right) + f\left(\frac{9}{6}\right) + f\left(\frac{11}{6}\right) \right) = \frac{364 \sqrt 3}{9} = 70{,}05183266\dots

Siehe auch

Literatur


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Trapezregel — Trapezregel,   Formel zur näherungsweisen Berechnung des bestimmten Integrals einer Funktion f (x) über einem Intervall [a, b], wobei anstelle von f (x) über ein angenähertes Sehnenpolygon summiert wird; ist das Intervall durch die Punkte   in …   Universal-Lexikon

  • Romberg-Extrapolation — Die Romberg Integration ist ein Verfahren zur numerischen Bestimmung von Integralen und wurde von Werner Romberg entwickelt. Sie ist eine Verbesserung der (Sehnen) Trapezregel durch Extrapolation. Inhaltsverzeichnis 1 Grundgedanke 2… …   Deutsch Wikipedia

  • Romberg-Schema — Die Romberg Integration ist ein Verfahren zur numerischen Bestimmung von Integralen und wurde von Werner Romberg entwickelt. Sie ist eine Verbesserung der (Sehnen) Trapezregel durch Extrapolation. Inhaltsverzeichnis 1 Grundgedanke 2… …   Deutsch Wikipedia

  • Romberg-Verfahren — Die Romberg Integration ist ein Verfahren zur numerischen Bestimmung von Integralen und wurde von Werner Romberg entwickelt. Sie ist eine Verbesserung der (Sehnen) Trapezregel durch Extrapolation. Inhaltsverzeichnis 1 Grundgedanke 2… …   Deutsch Wikipedia

  • Rombergverfahren — Die Romberg Integration ist ein Verfahren zur numerischen Bestimmung von Integralen und wurde von Werner Romberg entwickelt. Sie ist eine Verbesserung der (Sehnen) Trapezregel durch Extrapolation. Inhaltsverzeichnis 1 Grundgedanke 2… …   Deutsch Wikipedia

  • Romberg-Integration — Die Romberg Integration ist ein Verfahren zur numerischen Bestimmung von Integralen und wurde von Werner Romberg entwickelt. Sie ist eine Verbesserung der (Sehnen) Trapezregel durch Extrapolation. Inhaltsverzeichnis 1 Grundgedanke 2… …   Deutsch Wikipedia

  • Area under the curve — Fläche unter der Kurve Die Fläche unter einer Kurve ist eine elementare Anwendung der Integralrechnung. Inhaltsverzeichnis 1 Naturwissenschaf …   Deutsch Wikipedia

  • Euler-Maclaurin-Formel — Die Euler MacLaurin Formel oder Eulersche Summenformel (nach Leonhard Euler und Colin Maclaurin) ist eine mathematische Formel, die die Berechnung eines Integrals mit der Berechnung einer Summe von Stützstellen verbindet. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Bestimmtes Integral — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Crank-Nicolson — Das Crank Nicolson Verfahren ist in der numerischen Mathematik eine Finite Differenzen Methode zur Lösung der Wärmeleitungsgleichung und ähnlicher partieller Differentialgleichungen.[1] Es ist ein implizites Verfahren 2. Ordnung und numerisch… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”