Wafer

Als Wafer [ˈweɪfə(r)] (engl. „Waffel“ oder „Oblate“) werden in der Mikroelektronik, Photovoltaik und Mikrosystemtechnik kreisrunde oder quadratische, ca. 1 mm dicke Scheiben bezeichnet. Sie werden aus ein- oder polykristallinen (Halbleiter-)Rohlingen, sogenannten Ingots, hergestellt und dienen in der Regel als Substrat (Grundplatte) für elektronische Bauelemente, unter anderem für integrierte Schaltkreise (IC, „Chip“), mikromechanische Bauelemente oder photoelektrische Beschichtungen. Bei der Fertigung von mikroelektronischen Bauelementen werden in der Regel mehrere Wafer zu einem Los zusammengefasst und direkt hintereinander oder auch parallel bearbeitet (vgl. Losfertigung).

Wafer von 2 Zoll bis 8 Zoll
Ein polykristalliner Wafer, wie er für Solarzellen verwendet wird

Inhaltsverzeichnis

Aufbau

Eine Scheibe besteht in den meisten Fällen aus monokristallinem Silicium, es werden aber auch andere Materialien wie Siliciumcarbid, Galliumarsenid und Indiumphosphid verwendet. In der Mikrosystemtechnik werden auch Glas-Wafer mit einer Dicke im 1-mm-Bereich verwendet.

Die Scheiben werden in verschiedenen Durchmessern gefertigt. Die zur Zeit hauptsächlich verwendeten Wafer-Durchmesser unterscheiden sich je nach Halbleiterwerkstoff und vorgesehenem Verwendungszweck (Silicium: 150 mm, 200 mm und 300 mm (450 mm sind in der Diskussion); Gallium-Arsenid: 2 Zoll, 3 Zoll, 100 mm, 125 mm und 150 mm (200 mm technisch machbar). Je größer der Wafer, desto mehr ICs können darauf untergebracht werden. Da bei größeren Wafern der geometrische Verschnitt kleiner wird, können die ICs kostengünstiger produziert werden (siehe Ausbeute (Halbleitertechnik)). Um die Ausbeute zu maximieren, werden die Wafer in Reinräumen produziert.

Maße von Standard-Wafern
Angelsächsische
Bezeichnung
Wirklicher
Durchmesser in mm
Durchschnittliche Dicke von
Standard-Wafern in µm
Markteinführung
im Jahr
1-Zoll-Wafer 1960
2-Zoll-Wafer 50,8 275 1971
3-Zoll-Wafer 76,2 375 1973
4-Zoll-Wafer 100 525 1976
5-Zoll-Wafer 125 oder 127 625 1982
6-Zoll-Wafer 150 675 1988
8-Zoll-Wafer 200 725 1990
12-Zoll-Wafer 300 775 1997
18-Zoll-Wafer 450 925 (lt. Spezifikation[1]) 2015 (frühester derzeit erwarteter Termin)[2]

Die Herstellungskosten von unstrukturierten Wafern hängen vom Durchmesser und dem Material (Si, Ge, GaAs, usw.) sowie dem Herstellungsverfahren (siehe unten) ab. Die Kosten für bearbeitete Wafer – sogenannte strukturierte Wafer – steigen stark an, je mehr Prozessschritte durchgeführt wurden. Schon nach der Herstellung von STI-Strukturen haben sich die Kosten gegenüber unstrukturierten Wafern mindestens verdoppelt. Neben der Anzahl der durchgeführten Prozessschritte hängen die Kosten auch stark von der verwendeten Strukturgröße ab. Computerchips auf einem durchschnittlichen 200-mm-Wafer mit einer Strukturgröße von 90 nm (90-nm-Technologie) lagen Mitte 2008 bei ca. 850 Euro je Wafer. Die Produktionskosten von Spitzenprodukten in 45-nm-Technologie (auf 300-mm-Wafern), wie sie AMD und Intel produzieren, liegen jedoch deutlich höher. Je nach Chip-Größe lassen sich auf so einem Wafer einige Dutzend bis einige Hundert Chips herstellen. Nicht in diesen Kosten enthalten sind Aufwendungen, die nach der Chipherstellung entstehen, beispielsweise das Verpacken der Chips in Gehäuse.[3]

Herstellung

Ingot aus monokristallinem Silicium

Die Waferherstellung beginnt mit einem Block aus einem Halbleitermaterial, der Ingot genannt wird. Ingots können monokristallin oder polykristallin aufgebaut sein und werden zumeist mit einem der folgenden Verfahren hergestellt:

Alle diese Verfahren liefern im Endeffekt mehr oder weniger zylinderförmige oder quadratische Ein- oder Polykristalle, die quer zu ihrer Längsachse in Scheiben, die Wafer, zersägt werden müssen. Um die Präzision für diesen speziellen Schnitt bei möglichst wenig Verschnitt zu optimieren, wurde das Innenlochtrennen entwickelt. Die Schneidblätter tragen dabei die Schneidzähne (ggf. Schneiddiamanten) auf der Innenseite einer Innenbohrung, die etwas größer als der Rohlingsdurchmesser sein muss. Mittlerweile hat sich jedoch auch das Drahtsägen, das ursprünglich nur für Solar-Wafer entwickelt wurde, mehr und mehr etabliert.

In der Literatur finden sich spezielle Wafer-Bezeichnungen, die unter anderem angeben, welches Herstellungsverfahren genutzt wurde. So werden beispielsweise Wafer, die mit dem Czochralski-Verfahren hergestellt wurden, als CZ-Wafer bezeichnet. Analog dazu wird die Bezeichnung FZ-Wafer, für Wafer, die mit dem Zonenschmelzverfahren (engl. float zone) hergestellt wurden, verwendet.

Für die meisten Anwendungen müssen die Oberflächen der Wafer optisch spiegelnd poliert sein. Dazu werden die Wafer zunächst geläppt und anschließend mittels einer chemisch-mechanischen Politur behandelt, bis die geforderte Oberflächenrauigkeit (wenige Nanometer) erreicht ist. Weitere wichtige Geometrieparameter von Wafern sind die globalen Dickenschwankungen (englisch total thickness variation, TTV), die Art und Größe der Verwölbung (engl. wafer warp) bzw. Verbiegung (engl. wafer bow) uvm.[5][6]

Kennzeichnung

Konventionen für die Kennzeichnung von Wafern (1–4″)

Da für die Verarbeitung der Wafer die exakte Position in der bearbeitenden Maschine wichtig ist, wurden die Wafer früher (bei GaAs bis 125 mm Durchmesser auch heute noch) mit sogenannten „Flats“ (engl. für »Abflachung«) gekennzeichnet. Dabei wird mit Hilfe eines primären und eventuell eines sekundären Flats angezeigt, welche Winkelorientierung vorliegt und welche Kristallorientierung die Oberfläche hat (siehe Abbildung). Heute werden statt der Flats sogenannte Notches (Kerben) eingesetzt. Sie bieten den Vorteil der genaueren Positionierung und verursachen vor allem weniger Verschnitt.

Heutzutage wird außerdem eine eindeutige Waferkennzeichnung als Barcode, OCR-lesbarer Text und/oder Double dot matrix per Laser auf eine Stelle am Rand oder die Unterseite des Wafers geschrieben.

In der Photovoltaik

pseudoquadratische Solarzelle aus monokristallinem Silicium

In der Photovoltaik werden im Allgemeinen zwei Typen von Wafern unterschieden: polykristalline (auch multikristallin genannt) und monokristalline Wafer. Die Herstellung erfolgt für beide Typen durch Sägen von entsprechenden Ingots. Polykristalline Ingots werden aus quaderförmigen polykristallinen Silicium-Blöcken hergestellt, woraus sich die Form der Wafer ergibt (meist quadratisch). Monokristalline Wafer werden hingegen aus zylinderförmigen monokristallinen Ingots geschnitten, wie sie auch in der mikroelektronische Anwendungen genutzt werden. Sie besitzen in der Regel eine „pseudoquadratische“ Form, d. h. mit abgerundeten Ecken. Im Unterschied zu quadratisch geschnittenen Wafern fällt bei der Erzeugung aus den runden monokristallinen Ingots weniger Verschnitt an. Ineffiziente, verschnittreiche Verfahren sind kostensteigernd und verschlechtern die Umweltbilanz. Außerdem ist der Verschnitt durch die Schneidhilfsmittel und den Drahtabrieb verunreinigt (sogenannter Slurry) und kann nur schwer wieder zurückgewonnen werden. Andere Verfahren wie „Edge-defined Film-fed Growth“ (EFG) der Schott Solar oder „String Ribbon“ (SR) der Firma Evergreen Solar ermöglicht es, sehr dünne Wafer direkt aus der Schmelze zu ziehen.[7] Das abwasser-, energie-, und abfallintensive Drahtsägen entfällt hierbei.[8] Die Waferdicke ist meist wesentlich dünner als in der Mikroelektronik, circa 200 µm in der aktuellen Massenproduktion. Es werden keine Polierverfahren verwendet. Aus den Wafern werden in mehreren nachfolgenden Bearbeitungsschritten Solarzellen und hieraus wiederum Solarmodule hergestellt.

Weblinks

 Commons: Wafer – Sammlung von Bildern, Videos und Audiodateien
Wiktionary Wiktionary: Wafer – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Mark LaPedus: Industry Agrees on first 450-mm wafer standard. EETimes.com, 22. Oktober 2008.
  2. Peter Clark: IMEC plans 450mm wafer fab module for 2015. EETimes.com, 11. Oktober 2011.
  3. TSMC 2008 Second Quarter Investor Conference, 31. Juli 2008 (PDF)
  4. Eintrag Multikristalliner Ingot = Multisilizium im Glossar zur Silizium-Wafer-Herstellung der Firma Swiss Wafers, abgerufen am 16. April 2010.
  5. Sami Franssila: Introduction to Microfabrication. John Wiley and Sons, 2010, ISBN 9780470749838, S. 274–275 (Abschnitt: Wafer Mechanical Specifications).
  6. Thickness, Shape and Flatness Measurement of Semiconductor Wafers. MTI Instruments Inc. (Übersicht über die Wafer-Geometriecharakteristiken).
  7. Jörn Iken: Ziehen oder Sägen – ein Systemvergleich solarenergie.com. 4. Dezember 2006, abgerufen am 16. August 2010.
  8. Nicole Vormann; Murphy&Spitz: Studie: Nachhaltigkeit und Social Responsibility in der Photovoltaik-Industrie. Januar 2010, abgerufen am 4. März 2010 (Studie).

Wikimedia Foundation.

Synonyme:

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wafer — Wa fer, n. [OE. wafre, OF. waufre, qaufre, F. qaufre; of Teutonic origin; cf. LG. & D. wafel, G. waffel, Dan. vaffel, Sw. v[*a]ffla; all akin to G. wabe a honeycomb, OHG. waba, being named from the resemblance to a honeycomb. G. wabe is probably… …   The Collaborative International Dictionary of English

  • wafer — (n.) late 14c., from Anglo Fr. wafre, O.N.Fr. waufre honeycomb, wafer, perhaps from Frankish (Cf. Flem. wafer, altered from M.Du. wafel honeycomb; see WAFFLE (Cf. waffle) (n.)). Also found in Old French as gaufre, gofre wafer, waffle. Eucharistic …   Etymology dictionary

  • wafer — [wā′fər] n. [ME wafre < NormFr waufre < MDu wafel, wafer, WAFFLE1] 1. a) a thin, flat, crisp cracker or cookie b) anything resembling this, as a thin, flat disk of candy 2. a piece of Eucharistic bread, specif., a thin, flat, white,… …   English World dictionary

  • Wafer — Wa fer, v. t. [imp. & p. p. {Wafered}; p. pr. & vb. n. {Wafering}.] To seal or close with a wafer. [1913 Webster] …   The Collaborative International Dictionary of English

  • wafer — / vafer/ s.m. [dall ingl. wafer, affine al fr. gaufre cialda ]. (gastron.) [biscotto costituito da più strati friabili ripieni per lo più di vaniglia e cioccolato] ▶◀ cialda. ⇑ biscotto …   Enciclopedia Italiana

  • wafer — /vafer, ingl. ˈweɪfə(r)/ [vc. ingl., letteralmente «cialda»] s. m. inv. cialda …   Sinonimi e Contrari. Terza edizione

  • wafer — ► NOUN 1) a very thin light, crisp sweet biscuit. 2) a thin disc of unleavened bread used in the Eucharist. 3) a disc of red paper stuck on a legal document as a seal. 4) Electronics a very thin slice of a semiconductor crystal used in solid… …   English terms dictionary

  • Wafer — For semiconductor wafers, see Wafer (electronics). Israeli chocolate cream flavored wafers …   Wikipedia

  • Wafer — Un wafer en silicium gravé En électronique et micro électronique, un wafer (de l anglais) est une tranche ou une galette de semi conducteur. Sommaire 1 …   Wikipédia en Français

  • Wafer — Wa|fer 〈[ wɛıfə(r)] m. 3; El.〉 Halbleiterplatte, auf der elektr. Schaltungen untergebracht sind [engl.] * * * Wa|fer [ weɪfɐ ], der; s, [s] [engl. wafer, eigtl. = Waffel, Oblate] (Elektronik): dünne Scheibe aus Halbleitermaterial, auf die… …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”