Wirkungsgrad

Wirkungsgrad

Der Wirkungsgrad ist allgemein das Verhältnis von abgegebener Leistung (Pab = Nutzleistung) zu zugeführter Leistung (Pzu). Die dabei entstehende Differenz von zugeführter und abgegebener Leistung bezeichnet man als Verluste oder genauer Verlustleistung.

Der Begriff des Wirkungsgrads wird verwendet, um die Effizienz von Energiewandlungen, aber auch von Energieübertragungen zu beschreiben. Neben der allgemeinen Definition haben sich auch weitere Begriffe, wie beispielsweise Nutzungsgrad oder Arbeitszahl etabliert, die je nach Fachbereich bestimmte Randbedingungen und Besonderheiten des Energieflusses in den betrachteten Systemen berücksichtigen.

Der Wirkungsgrad wird mit η (Eta) bezeichnet. Er ist eine dimensionslose Größe und hat einen Wert zwischen 0 und 1 oder, in Prozent ausgedrückt, zwischen 0 und 100 %.


\eta = \frac{P_\mathrm{ab}}{P_\mathrm{zu}}

Pab ist beispielsweise die mechanische Leistung, die ein Elektromotor an der Welle abgeben kann; Pzu ist die elektrische Leistung, die man dem Motor zuführen muss.

Die momentane aufgenommene oder abgegebene Leistung kann unabhängig vom Wirkungsgrad sehr unterschiedlich sein, wenn Energieaufnahme und -abgabe zeitlich versetzt auftreten, etwa beim Auf- und Entladen eines Akkumulators, oder bei der Aufnahme solarer Energie durch Pflanzen und späterer Energiefreisetzung durch Verbrennen.

Der Gütegrad beschreibt im Gegensatz dazu nur die inneren Verluste einer Maschine und fällt meistens erheblich besser aus.

Darstellung des Wirkungsgrads einer Glühlampe in einem Sankey-Diagramm

Inhaltsverzeichnis

Wertebereich

Der theoretisch mögliche Wertebereich geht von 0 bis 1 bzw. 0 bis 100 %. Der höchste Wert (1 bzw. 100 %) kann in der Praxis nicht erreicht werden, weil bei allen Vorgängen Energie durch Wärme oder Reibung in thermische Energie umgewandelt wird. Bei Wärmekraftmaschinen wird der Wirkungsgrad zusätzlich durch den Abgasverlust begrenzt.

Ein Wirkungsgrad größer oder gleich 1 entspräche einem Perpetuum Mobile erster Art, was gegen den Energieerhaltungssatz verstößt. Vorrichtungen, die mehr Energie abgeben, als sie aufnehmen oder gespeichert haben, sind nicht möglich.

Bei Wärmekraftmaschinen kann der Wirkungsgrad niemals den idealen Wirkungsgrad des Carnot-Prozesses übersteigen. Dies ist der Quotient aus der Differenz zwischen höchster Temperatur und niedrigster Temperatur und der höchsten Temperatur im gesamten Prozess. Die Temperatur ist dabei in Kelvin anzugeben.

Mechanischer Wirkungsgrad

Der mechanische Wirkungsgrad wird beispielsweise bei Getrieben oder Lagern angegeben und ist Teil des Gesamtwirkungsgrades einer Anlage (z.B. Antriebsstrang). Er berücksichtigt die Umwandlung eines Teils der mechanischen Eingangsleistung in Wärme. Dieses äußert sich in der Erwärmung der Bauteile. Verursacht wird dieser zumeist unerwünschte Energieabfluss durch Reibung.

Wärme-Wirkungsgrade

Thermischer Wirkungsgrad bzw. Prozesswirkungsgrad

Der thermische Wirkungsgrad oder Prozesswirkungsgrad gibt das Verhältnis der gewonnenen mechanischen Leistung zum zugeführten Wärmestrom in einer Wärmekraftmaschine, z. B. einer Dampfturbine an:


\eta_\mathrm{th} = \frac{P_\mathrm{th}}{\dot{Q}}

mit \eta_\mathrm{th} \, als dem thermischen Wirkungsgrad, P_\mathrm{th} \, der gewonnenen mechanischen Leistung und \dot{Q} dem zugeführten Wärmestrom.

Die Obergrenze für jeden thermischen Wirkungsgrad ist der Carnot-Wirkungsgrad, der aus naturgesetzlichen Gründen nicht überschritten werden kann:

\eta_\mathrm{C}=1-\frac{T_n}{T_h}\!\,,

wobei Tn die niedrigste und Th die höchste im Prozess auftretende Temperatur in Kelvin ist.

Feuerungstechnischer Wirkungsgrad

Der feuerungstechnische Wirkungsgrad (FTW) gibt die Nutzung der aus der Verbrennung eines Brennstoffes entstehenden Wärme bei Nennleistung an. Er berücksichtigt lediglich den Wärmeverlust durch Abkühlung der Abgase auf Umgebungsluft. Eine Bewertung der energetischen Effizienz eines Wärmeerzeugers allein mit Hilfe des gemessenen Abgasverlustes ist möglich, wenn außer dem Abgasverlust nur marginale weitere Verluste vorhanden sind. Bis Ende des vorigen Jahrhunderts war diese Näherungsrechnung für Heizungsanlagen üblich, heute wird der Anlagenwirkungsgrad bzw. Jahresnutzungsgrad betrachtet.

Der FTW bestimmt sich aus der Differenz von 100 % und dem Abgasverlust, der die im Abgas verbleibende Wärmemenge, bezogen auf die Temperatur der die Feuerstelle umgebenden Luft angibt. Eine Abkühlung unter die Temperatur der Umgebungsluft wird dabei als nicht möglich angesetzt.

Der Abgasverlust ist von der Zusammensetzung des Abgases abhängig, vor allem dem Luftanteil, da in der Verbrennungswärme die Erwärmung der Verbrennungsluft auf die Flammtemperatur enthalten ist.

Als 100-Prozent-Wert wird traditionell der Heizwert (auch „unterer Heizwert“ genannt) angesetzt, der definitionsgemäß die evtl. anfallende Kondensationswärme des Abgases nicht berücksichtigt. Aufgrund der in den letzten Jahren zugenommenen Verbreitung der Brennwerttechnik ist diese Betrachtungsweise jedoch nicht mehr zeitgemäß.

Moderne Anlagen steigern den Wirkungsgrad durch Absenken der Abgastemperaturen und durch Rückgewinnung der Kondensationswärme von Wasserdampf und Kohlenwasserstoffen. Sie nutzen den Brennwert eines Brennstoffes, während in alten Anlagen nur der Heizwert genutzt werden konnte. Es werden hohe Anforderungen an die Kaminanlage gestellt. Die Abgase müssen teilweise aktiv (z. B. Gebläse) abtransportiert werden, da sie nicht mehr warm genug sind, um selbst aufzusteigen. Der Schornstein ist korrosiven Angriffen durch die im kondensierten Wasser gelösten Verbrennungsrückstände ausgesetzt (Versottung). Unter bestimmten Bedingungen bildet sich zudem Teer, der aufgefangen und in die Verbrennung zurückgeführt werden muss. Besser ist es deswegen, Luft-Abgas-Systeme einzusetzen.

Kesselwirkungsgrad

Der Kesselwirkungsgrad hK (%) ist das Verhältnis von Nennwärmeleistung in Prozent der Nennwärmebelastung bei einer Messung im konstanten Dauerbetrieb bei Nennwärmeleistung. Er berücksichtigt wie der FTW auch den Abgasverlust aber darüber hinaus auch den Wärmeverlust an die Umgebung des Aufstellungsraumes. Der Wirkungsgrad kann entweder direkt über die abgegebene und zugeführte Leistung bestimmt werden oder indirekt (feuerungstechnsicher Wirkungsgrad), indem die Verluste bestimmt werden.

Isentroper Wirkungsgrad

Der isentrope Wirkungsgrad wird meistens zur Beschreibung von Wärmekraftmaschinen benutzt.

Da thermische Energie nicht vollständig in andere Energieformen (z. B. Strom, mechanische Energie) umgewandelt werden kann, haben sich die Begriffe Anergie und Exergie entwickelt, die kennzeichnen, welcher Teil der thermischen Energie in Arbeit umgewandelt werden kann (Exergie) und welcher als thermische Energie verbleiben muss (Anergie). Es gilt damit

thermische Energie = Anergie + Exergie

und der Wirkungsgrad der realen Wärmekraftmaschine ist immer kleiner oder gleich dem der idealen Wärmekraftmaschine:


\qquad \eta_{ideal} = 1 - \frac{T_\mathrm{min}}{T_\mathrm{max}} = \frac{\mbox{Exergie}}{\mbox{thermische Energie}} \,

wobei die Wärmebäder, an denen die Wärmekraftmaschine angeschlossen ist, die Temperaturen Tmin und Tmax aufweisen. Der isentrope Wirkungsgrad benutzt diesen Vergleichsprozess um ihn mit dem realen Prozess zu vergleichen.


\eta_\mathrm{isentrop} = \frac{-P_\mathrm{Nutz}}{\mbox{Exergie}} \,

Anlagenwirkungsgrad und Gesamtwirkungsgrad

Arbeiten mehrere Maschinen und Übertrager hintereinander, so werden deren einzelne Wirkungsgrade zum Gesamtwirkungsgrad ηgesamt der Anlage, dem Anlagenwirkungsgrad multipliziert.


\eta_\mathrm{gesamt} = \eta_{1} \cdot \eta_{2} \cdot \ldots \cdot \eta_{n} \,

Beispiel:

Gesamtwirkungsgrad: ηgesamt = 0,4 · 0,99 · 0,95 · 0,8 = 0,30096 oder rund 30 %.

Bei diesem Beispiel wird angenommen, dass die Energieübertragung zwischen den einzelnen Maschinen verlustfrei passiert. Ist dieses nicht der Fall, so müssen zusätzlich Wirkungsgrade der Energieübertragung mitgerechnet werden.

Bei schlechten Einzelwirkungsgraden können hier leicht Überraschungen auftreten. Deutlich wird dies an einem weiteren Beispiel, bei dem die Eingangsenergie über drei Stufen umgeformt wird und die Ausgangsleistung 100 Watt betragen soll. Dabei sollen zwei Übertragungsketten betrachtet werden. Die erste mit sehr hohen Wirkungsgraden von dreimal 90 % (resultierender Gesamtwirkungsgrad 72,9 %), die zweite mit niedrigen Wirkungsgraden von je 20 % (resultierender Gesamtwirkungsgrad 0,8 %). In dem ersten Fall mit den hohen Wirkungsgraden ergibt sich hier eine notwendige Eingangsleistung von 137 Watt. Im zweiten Beispiel mit den schlechten Wirkungsgraden sind hierfür jedoch erstaunliche 12.500 Watt nötig.

Der Anlagenwirkungsgrad z. B. einer Heizungsanlage bezieht den Wirkungsgrad aller Einzelgeräte wie Wärmeerzeuger, Leitungen, Heizkörper mit ein, so dass deren Verluste addiert werden und daraus der tatsächliche Wirkungsgrad der Gesamtanlage errechnet wird, der dem Energieverbrauch und der gelieferten Nutzenergie entspricht.

Wird die bei einem thermischen Umwandlungsprozess freiwerdende Abwärme weiter genutzt, zum Beispiel zur Luftvorwärmung, Ölvorwärmung oder Fernheizung, wie es bei Blockheizkraftwerken der Fall ist (siehe Tab. unten), so vergrößert sich der Wirkungsgrad der Anlage, da ein Teil der eigentlich für den Prozess verloren gegangenen Wärme trotzdem genutzt werden kann. Der sich daraus ergebende Anlagenwirkungsgrad kann daher über den niedrigeren thermischen Wirkungsgraden (Prozesswirkungsgrad) liegen. Anlagenwirkungsgrade sind mit Wärmeübertragern relativ einfach zu verbessern, während die Verbesserung des thermischen Wirkungsgrades häufig mit erheblichen Mühen und Forschungsaufwand verbunden ist.

Jahresnutzungsgrad

Der Jahresnutzungsgrad ist der jahresdurchschnittliche Anlagenwirkungsgrad über alle Betriebszyklen eines Wärmeerzeugers. Damit werden alle Betriebsverluste gemessen über das Betriebsjahr im Jahresnutzungsgrad erfasst. Dieses ermöglicht eine realistische Kosten-Nutzen-Rechnung von Energiesparmaßnahmen bis hin zum Niedrigenergiehaus, was mit der Näherungsrechnung des FTW nicht möglich ist. Da auch die durchschnittlichen Häuser durch Verbesserung der Dämmung immer weniger Energie verbrauchen, haben die weiteren Verluste durch den Bereitschaftsenergieverbrauch = Bereitstellungsverlust (u.a. durch Schornsteinbelüftung durch die Feuerungsanlage), den Wärmeverlust der Wärmeerzeuger durch Abstrahlung, den Verlust durch die zur Kondensation des Wassers im Brennstoff, benötigte Wärme durch häufige Starts der Heizung mit schlechtem Wirkungsgrad in der Startphase, niedrige Brennerlaufzeit durch zu groß dimensionierten Kessel, einen immer größeren Anteil am Energieverbrauch und tragen zur Verringerung des Anlagenwirkungsgrades und des Jahresnutzungsgrades der Heizanlage bei. Auch wenn moderne Einzelgeräte einer Heizungsanlage in der Regel einen Wirkungsgrad bei Nennleistung von über 90 % haben, beläuft sich der Jahresnutzungsgrad nur auf 60 – 80 %, die vom Heizkörper abgegeben werden.

Für Konstanttemperaturkessel mit den Betriebssituationen

  1. Stillstand
  2. Bereitschaft (Stand-by)
  3. Betrieb mit dem Jahresnutzungsgrad nach VDI 2067 und der angenäherten Berechnungsformel: Jahresnutzungsgrad (%) = Kesselwirkungsgrad (%) · Brennerlaufzeit [h/a] - 1) geteilt durch (1 + relativer Bereitschaftswärmeverlust · Einschaltdauer der Heizungsanlage [h/a]).

Normnutzungsgrad

Der Normnutzungsgrad bezieht die neue Technik der Brennwertkessel mit modulierender Leistungsregelung (Teillastbetrieb) durch gestufte Teillastbetriebspunkte von 12,8 %, 30,3 %, 38,8 %, 47,6 % und 62,6 % der Nennleistung mit ein.

Die Berechnung ist nach DIN 4702 Teil 8 festgelegt für

  1. Heizbetrieb
  2. Warmwassererwärmung
  3. kombinierter Heizbetrieb mit allerdings nur etwa fünf Prozent Anteil Warmwassererwärmung.

Wirkungsgrade größer 100 %

Maschinen mit Wirkungsgraden größer oder gleich 100 % werden auch als Perpetuum Mobile bezeichnet. Solche Maschinen können aufgrund von fundamentalen Überlegungen (Energiesatz, Hauptsätze der Thermodynamik) nicht existieren. Deshalb können Wirkungsgrade von über 100 % in der Realität nicht auftreten. Wenn in der Praxis manchmal trotzdem Wirkungsgrade von über 100 % angegeben werden, so ergeben sich diese aus Berechnungen, die nicht alle Energieanteile berücksichtigen.

Ein Beispiel sind Brennwertkessel, bei denen teilweise heizwertbezogene Wirkungsgrade von über 100 % angegeben werden. Dabei wird unter „aufgewendeter Energie“ der Heizwert des Brennstoffes angesetzt. Der Heizwert berechnet sich jedoch aus der insgesamt freiwerdenden Wärme abzüglich der Verdampfungswärme für das bei der Verbrennung entstehende Wasser. Der Heizwert beinhaltet also nur einen Teil der gesamten Brennstoffenergie. Im Unterschied zum „konventionellen“ Heizkessel wird beim Brennwertkessel das Abgas soweit abgekühlt, dass das bei der Verbrennung verdampfte Wasser kondensiert. Die dabei freiwerdende Kondensationswärme kommt der Nutzenergie zugute. Wird der Wirkungsgrad nicht auf Basis des Heizwertes sondern auf Basis des Brennwertes des Brennstoffes berechnet, wird im Idealfall ein Wirkungsgrad von maximal 100 % erreicht.

Wärmepumpen und Kälteanlagen – z. B. Klimaanlagen und Kühlschränke – funktionieren als umgekehrte Wärmekraftmaschine. In der Fachliteratur wird bei diesen Geräten neben dem Begriff „Wirkungsgrad“ die Leistungszahl (ε) als Maß für die Effizienz verwendet. Die Herstellerangaben bezeichnen die Leistungszahl für Kälteanlagen allerdings oft als „Wirkungsgrad“. Die Wärmepumpe fördert die Wärmeenergie aus der Umwelt und bringt sie auf das gewünschte Temperaturniveau. Die dabei insgesamt bereitgestellte Wärmeleistung ist größer als die beim Verdichtungsprozess entstehende Wärmeleistung. Daher werden für diesen Prozess „Wirkungsgrade“ von über 100 % erreicht. Typische Werte liegen zwischen 300 % und 800 %, was einer Effizienz (= Leistungszahl) von 3 bis 8 entspricht. Zur Vermeidung von Verwechslungen wird der thermische Wirkungsgrad von Wärmepumpen und Kältemaschinen als COP (engl. Coefficient Of Performance) bezeichnet, der kleiner ist als der reziproke Carnot-Wirkungsgrad.

Beispiele

Wirkungsgrad, Beispiele
Maschine, Prozess Aufgewandte Energie Nutzenergie Wirkungsgrad / %
Bereitstellung von Nutzenergie
Kernkraftwerk[Anm. 1] atomar elektrisch 33 (fiktiv)
GuD-Kraftwerk (Erdgas) chemisch elektrisch & thermisch 50–60
MHD-Generator thermisch elektrisch <30
Solarzelle elektromagnetisch (Sonnenstrahlung) elektrisch 5–27 (40)
Thermoelement (thermoelektrischer Generator) thermisch elektrisch 3–8
Wärmekraftwerk (Kohle) chemisch elektrisch 25–50
Wärmekraftwerk oder Motor mit Kraft-Wärme-Kopplung[Anm. 2] chemisch elektrisch & thermisch bis 98
Wasserkraftwerk mechanisch elektrisch 80–90
Windkraftanlage[Anm. 3] mechanisch elektrisch bis 50
Elektrolyse von Wasser elektrisch chemisch 70
Thermolyse von Wasser atomar chemisch 90 (fiktiv)
Maschinen und Geräte
Brennstoffzelle chemisch elektrisch 20–48
Dampfmaschine chemisch mechanisch 3–44
Stirlingmotor thermisch mechanisch 10–66
Verpuffungsstrahltriebwerk chemisch mechanisch ?
Verbrennungsmotor (PKW) chemisch mechanisch 30–50
Dieselmotor chemisch mechanisch bis zu 50
Ottomotor chemisch mechanisch 10-37
Zweitaktdieselmotor (bei Resonanzdrehzahl) chemisch mechanisch 55
Elektromotor elektrisch mechanisch 20–99,5
Fahrraddynamo[Anm. 4] mechanisch elektrisch 20–65
Generator[Anm. 5] mechanisch elektrisch 95–99,5
Glühlampe (keine Halogenlampe) elektrisch elektromagnetisch (Licht) 3–5
Hochspannungs-Gleichstrom-Übertragung[Anm. 6] elektrisch elektrisch 95
Lautsprecher[Anm. 7] elektrisch akustisch 0,1–40, typ. 0,3 für Hifi
LED elektrisch elektromagnetisch (Licht) 5–25
Schaltnetzteil (für elektrische oder elektronische Geräte) elektrisch elektrisch 50–95
Sendeanlage elektrisch elektromagnetisch (Radiowellen) 30–80
Thermoelement[Anm. 8] thermisch elektrisch 3–8
Transformator elektrisch elektrisch 50–99,8
Turbinentriebwerk (zivile Luftfahrt) chemisch mechanisch 40
Wechselrichter elektrisch elektrisch 93–98
Zahnradpumpe mechanisch mechanisch bis 90
Wärmeproduktion
Gasherd (Haushalt)[Anm. 9] chemisch thermisch 30–40
Elektroherd (Haushalt)[Anm. 9] elektrisch thermisch 50–60
Gasheizung chemisch thermisch 80–90
Kohleofen (Haushalt) chemisch thermisch 30–50
Kohleofen (Industrie) chemisch thermisch 80–90
Lagerfeuer (Kochstelle)[Anm. 10] chemisch thermisch < 15
Offener Kamin chemisch thermisch 10–30
Sonnenkollektor elektromagnetisch (Sonnenstrahlung) thermisch < 85
Tauchsieder elektrisch thermisch >98
Natürliche Prozesse
Photosynthese-Reaktion elektromagnetisch (Sonnenlicht) chemisch 35
Glühwürmchen (Leuchtreaktion) chemisch elektromagnetisch (Licht) < 95
Mensch (Skelettmuskulatur) chemisch mechanisch 20–30[1]
Umfangreichere Prozesse
Kohleabbau (Abbau von Kohle und anschließende Verbrennung)[Anm. 11] chemisch thermisch 30–60 (?)
Photosynthese (Erzeugung von Biomasse und anschließende Verbrennung)[Anm. 12] elektromagnetisch (Sonnenlicht) chemisch 0,1–2,5

Anmerkungen:

  1. Der Wirkungsgrad von Kernkraftwerken wird nach offiziellen Berechnungsmethoden (IEA, EUROSTAT: Wirkungsgradansatz) fiktiv mit 33 % (= Wirkungsgrad eines durchschnittlichen Wärmekraftwerks) angesetzt, da dem Kernbrennstoff (z.B. Uran) nicht auf einfache Weise eine Art Brennwert (wie bei fossilen Energien) zugeordnet werden kann, d.h. es existiert physikalisch/ chemisch keine klar definierte Primärenergie. Bezogen auf die gesamte Spaltenergie von U235 liegt der Wirkungsgrad eines Kernkraftwerks bei knapp 10 %. Bei diesem Ansatz muss aber zusätzlich der Aufwand der Wiederaufarbeitung der Brennstäbe mit einkalkuliert werden.
  2. Mit Berücksichtigung der Wärme spricht man häufiger vom Nutzungsgrad. Der Wirkungsgrad zur Erzeugung von Strom ist bei Auskopplung von Wärme geringer als ohne Wärmeentnahme.
  3. Der Wirkungsgrad von Windkraftanlagen wird dadurch begrenzt, dass nach dem Betzschen Gesetz maximal 59,3 % der im Wind enthaltenen mechanischen Leistung in Nutzleistung umgewandelt werden kann. Da das Verhältnis der an die Rotorwelle abgegebenen Leistung zu der Leistung, die der Strömung im Nachlauf fehlt, bei einer modernen Windkraftanlage zwischen 70 und 85 % liegt, errechnet sich der gegebene Wert aus 85 % von 59,3 %.
  4. Bei fast allen Fahrraddynamos ist der Wirkungsgrad bei ca. 20 % anzutreffen, besonders effektive Dynamos mit Reiberädchen erreichen 25–30 %. Werte von 65 % lassen sich nur durch alternative Bauarten, wie Beispielsweise Nabendynamos im optimalen Geschwindigkeitsbereich erreichen.
  5. Gas-, Dampf- bzw. Wasserturbinen besitzen einen Wirkungsgrad über 95 %. Bei thermischen Kraftwerken begrenzt der Carnot'sche Kreisprozess den Gesamtwirkungsgrad auf 35 - 60%. Hinzu kommen bis zum Endverbraucher Umform- und Leitungsverluste von ca. 15%.
  6. ohne Leitungsverluste
  7. Anders als bei Bühnenlautsprechern ist bei Heim-Lautsprechern und Studio-Monitoren die klangneutrale Wiedergabe wichtiger als „lauter“ Wirkungsgrad. Bei Lautsprechern wird in den Daten häufig der sogenannte „Wirkungsgrad“ angegeben, der gar keiner ist. Was man dort findet ist der Kennschalldruckpegel in dB/W/m (dB pro Watt in einem Meter Abstand, besser also dB/(W*m) ), was unwissenderweise gerne mit Wirkungsgrad bezeichnet wird.
  8. Thermoelemente werden für manche Zwecke auch zur Bereitstellung von Nutzenergie verwendet.
  9. a b Ein Gasherd heizt die Umgebung. Ein Elektro-Induktionsherd heizt gezielt das Kochgeschirr, mit Wärmeverlusten in der Induktionselektronik. Dabei ist allerdings nur der Wirkungsgrad am Ort der Umwandlung berücksichtigt und nicht der Energieverlust bei der Stromerzeugung. Wird dieser berücksichtigt, hat ein Gasherd mindestens einen eben so guten Wirkungsgrad wie ein Elektroherd – je nach Wirkungsgrad des Kraftwerks.
  10. Ein Lagerfeuer setzt den Heizwert des Brennstoffs mit hohem Wirkungsgrad in Wärme um (Unterscheidung zwischen Brenn- und Heizwert beachten). Aber nur ein geringer Teil der Wärme erhitzt einen Topf, der über dem Feuer hängt. Der größte Teil erwärmt die umgebende Luft.
  11. Wirkungsgrad der Kohleförderung: Wie viele Tonnen Braun- bzw. Steinkohle muss ich fördern und für die Produktionsanlagen verstromen, um eine Tonne verkaufen zu können?
  12. Gesamtwirkungsgrad, d. h. auch einschließlich Energie, die zur Bereitstellung der Reaktionsmoleküle erforderlich ist.

Angabe des Wirkungsgrades bei Lautsprecherdaten

Akustischer Wirkungsgrad η (Eta) eines Lautsprechers:


\eta = \frac{P_\mathrm{ak}}{P_\mathrm{e}} \,

Pak = abgegebene akustische Leistung

Pe = zugeführte elektrische Leistung

Die Definition des akustischen Wirkungsgrads stimmt mit der des akustischen Umsetzungsgrads überein.

In den Lautsprecherdaten wird nie der sehr niedrige Wirkungsgrad in Prozent angegeben, sondern der Kennschalldruckpegel in dB/W/m (bzw. dB/(W*m) ), der unrichtig mit „Wirkungsgrad“ bezeichnet wird. Der Wirkungsgrad liegt zwischen 0,002 und 0,02 - also nur zwischen 0,2 und 2 Prozent. Er kann in den Kennschalldruck umgerechnet werden:


\mbox{Kennschalldruckpegel in dB} = 112 + 10 \cdot \log_{10} (\mbox{Wirkungsgrad}) \,

Wirkungsgrad in Prozent Kennschalldruckpegel
0,05 5 % 99 dB
0,02 2 % 95 dB
0,01 1 % 92 dB
0,005 0,5 % 89 dB
0,002 0,2 % 85 dB

Siehe auch

Belege

  1. Klaus Golenhofen: Basislehrbuch Physiologie: Lehrbuch, Kompendium, Fragen und Antworten.. Elsevier, München, Seite 110, ISBN 978-3437424823: >

Quellen

  • Adolf J. Schwab: Elektroenergiesysteme – Erzeugung, Transport, Übertragung und Verteilung elektrischer Energie. Springer Verlag 2006, ISBN 3-540-29664-6, Seite 76

Weblinks

Wiktionary Wiktionary: Wirkungsgrad – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wirkungsgrad — Wirkungsgrad, das Verhältnis der einem gegebenen Zwecke dienenden Energie (s.d.), z.B. der Nutzarbeit, zu der einschließlich unbeabsichtigter Abgaben und Leitungen dafür aufgewandten Energie. Der Ausdruck dieses Wirkungsgrads hängt von den in… …   Lexikon der gesamten Technik

  • Wirkungsgrad — Wirkungsgrad, s.u. Maschine 1) u. Wasserkraft …   Pierer's Universal-Lexikon

  • Wirkungsgrad — (Nutzeffekt), allgemein das Verhältnis der für irgend einen Zweck nutzbar gemachten Energie zu der hierfür in beliebiger Form aufgewandten Energie. Wegen unvermeidlicher Verluste (Reibungsverlust, Wärmeverlust etc.) kann stets nur ein Teil der… …   Meyers Großes Konversations-Lexikon

  • Wirkungsgrad — Wirkungsgrad, Güteverhältnis, das Verhältnis der von einer Maschine geleisteten Arbeit zur indizierten Arbeit (s. Indikator) …   Kleines Konversations-Lexikon

  • Wirkungsgrad — ↑Efficiency …   Das große Fremdwörterbuch

  • Wirkungsgrad — Effektivität; Wirksamkeit; Leistungsfähigkeit; η; Effizienz; Energieeffizienz; Eta * * * Wịr|kungs|grad 〈m. 1〉 1. Grad der Wirkung, Nutzeffekt 2. bei der Energieumwandlung das Verhältnis der gewonnenen Energie zur aufgewendeten Energie ●… …   Universal-Lexikon

  • Wirkungsgrad — Wịr·kungs·grad der; Phys; die Relation zwischen der aufgewandten Leistung und dem Nutzen einer Maschine ≈ Effektivität: etwas erreicht einen hohen Wirkungsgrad …   Langenscheidt Großwörterbuch Deutsch als Fremdsprache

  • Wirkungsgrad — naudingumo koeficientas statusas T sritis automatika atitikmenys: angl. efficiency vok. Wirkungsgrad, m rus. коэффициент полезного действия, m pranc. rendement, m …   Automatikos terminų žodynas

  • Wirkungsgrad — našumas statusas T sritis Standartizacija ir metrologija apibrėžtis Išėjimo ir įėjimo dydžių verčių, pvz., galių, energijų, elementariųjų dalelių ir pan., dalmuo. Našumas dažniausiai išreiškiamas procentais. atitikmenys: angl. efficiency vok.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Wirkungsgrad — naudingumo koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Sistemos naudingam darbui panaudotos ir visos įgytos energijos dalmuo. atitikmenys: angl. efficiency; efficiency coefficient vok. Nutzeffekt, m; Wirkungsgrad, m… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”