Beschleunigungssensor
Röntgenaufnahmen eines Beschleunigungssensors aus dem Armband eines Schlafphasenweckers des österreichischen Unternehmens Axbo. Unten Zoom auf einen der Sensoren mit zwei Metallkugeln als Testmasse.

Ein Beschleunigungssensor ist ein Sensor (Fühler), der die Beschleunigung misst, indem die auf eine Testmasse wirkende Trägheitskraft bestimmt wird. Somit kann z. B. bestimmt werden, ob eine Geschwindigkeitszunahme oder -abnahme stattfindet. Der Beschleunigungssensor gehört zur Gruppe der Inertialsensoren.

Er wird auch Beschleunigungsmesser oder Accelerometer genannt, weiterhin B-Messer und G-Sensor. Werden kontinuierliche Beschleunigungsmessungen aufgezeichnet, so bezeichnet man diese Messreihe als Akzelerogramm (Analog zum Seismogramm, das durch ein Seismometer aufgezeichnet wird).

Inhaltsverzeichnis

Messgröße

Die Beschleunigung wird in der SI-Einheit m·s-2 (Meter pro Sekunde zum Quadrat) gemessen. In der Praxis wird sie jedoch oft als Vielfaches oder Teil des Mittelwerts der Erdbeschleunigung angegeben. Die mittlere Erdbeschleunigung wird dabei mit g bezeichnet (kleines „G“ in kursiver Schrift) und beträgt - gerundet - 9,81 m·s-2.

1g = \mathrm{9{,}81\frac {m}{s^2}}

→ Hauptartikel g-Kraft

Anwendungsbeispiele

Die Beschleunigung ist eine mechanische Größe, die in vielen Bereichen der Technik eine große Rolle spielt. Beschleunigungssensoren haben daher eine Vielzahl von Einsatzmöglichkeiten - zum Beispiel:

  • Präzisions-Accelerometer werden teilweise auch für Messungen im Erdschwerefeld eingesetzt - siehe Gravimetrie und Gradiometrie, sowie der ESA-Satellit GOCE.
  • Positionsbestimmung mit inertialen Navigationssystemen (auch Trägheitsnavigationssystem). INS werden heute insbesondere in der Luftfahrt zunehmend durch GPS abgelöst.
  • Schlafphasenwecker; diese wecken die zu weckende Person zu einem Zeitpunkt auf, zu dem sie sich bewegt. Somit ist sichergestellt, dass die Person nicht in der REM-Phase aufwacht, was normalerweise in einer größeren Müdigkeit im späteren Tagesverlauf führt. Hier genügen auch Bewegungssensoren.

Messprinzipien

Die ersten dieser Messinstrumente hatten eine sog. „sensitive (empfindliche) Achse“, auf der die Prüfmasse verschiebbar angeordnet war. Sie waren bis etwa 1970 - in Verbindung mit Kreiseltechnik - die Basis vieler Steuerungsmethoden und der Inertialnavigation; später wurden sie weitgehend durch genauere Systeme mit biegsamen Quarz-Stäben („Q-Flex“) oder magnetisch stabilisierten Massen ersetzt. Miniaturisierte Sensoren sind meist mit piezoelektrischen Sensoren oder als MEMS (Micro-Electro-Mechanical System) aufgebaut. Viele technische Anwendungen benötigen volle dreidimensionale Messungen, etwa im Maschinenbau, zur Steuerung von Robotern oder in der Raumfahrt. Hier ist Miniaturisierung eine wichtige Voraussetzung - neben Unempfindlichkeit gegen Temperatur, Vibrationen und andere Effekte. Zahlreiche Anwendungen kommen aber mit 2D-Sensoren aus, wenn es hauptsächlich um Bewegungen in einer Ebene geht.

Kleinsensoren mit einer Masse von wenigen Gramm haben Messbereiche von einigen g bis zu Dutzenden oder sogar hunderten g und sind robust gegen Stöße. Die Auflösung erreicht 0,01mg.

Präzisionsinstrumente mit einer Masse von mehreren Kilogramm liefern Genauigkeiten von 10-9g.

Piezoelektrische Beschleunigungssensoren

Ein piezokeramisches Sensorplättchen wandelt dynamische Druckschwankungen in elektrische Signale um, die entsprechend weiterverarbeitet werden können. Die Druckschwankung wird durch eine an der Piezokeramik befestigte („seismische“) Masse erzeugt und wirkt bei einer Beschleunigung des Gesamtsystems auf die Piezokeramik. Dieses System wird z. B. bei Radauswuchtungsmaschinen verwendet, wo jede Unwucht des Rades ein entsprechendes Signal in der Piezokeramik erzeugt. Es erkennt innerhalb von Sekunden die Unwucht am Reifen. Konstante Beschleunigungen (z. B. Erdbeschleunigung) können mit piezoelektrischen Beschleunigungssensoren nicht erfasst werden.

Mikrosysteme

In den letzten Jahren haben miniaturisierte Beschleunigungssensoren zunehmend Bedeutung erlangt. Diese sind mikro-elektro-mechanische Systeme (MEMS) und werden meist aus Silicium hergestellt. Diese Sensoren sind Feder-Masse-Systeme, bei denen die „Federn“ nur wenige μm breite Silicium-Stege sind und auch die Masse aus Silizium hergestellt ist. Durch die Auslenkung bei Beschleunigung kann zwischen dem gefedert aufgehängten Teil und einer festen Bezugselektrode eine Änderung der elektrischen Kapazität gemessen werden. Der gesamte Messbereich entspricht einer Kapazitätsänderung von nur ca. 1 pF, daher muss die Elektronik zur Auswertung dieser kleinen Kapazitätsänderung gleich auf demselben Halbleiterbaustein integriert werden.

Es gibt auch Varianten, bei denen auf dem Biegebalken piezoresistive Widerstände durch Ionenimplantation angebracht sind, die entsprechend der Biegung ihren Widerstand ändern und so auf die Beschleunigung zurückschließen lassen.

Für die Herstellung dieser miniaturisierten Sensoren werden die Masse und die kleinen Silizium-Federn (Silizium-Beinchen) mittels Fotolithografie aus dem Silizium herausgeätzt. Um eine freitragende Struktur zu erhalten, wird eine darunterliegende Schicht aus Siliziumdioxid ebenfalls durch Ätzen entfernt.

Diese Art von Beschleunigungssensoren hat den Vorteil relativ geringer Stückkosten (Massenfertigung) und hoher Zuverlässigkeit (manche solcher Sensoren können noch Beschleunigungen bis zum Tausendfachen des Messbereichs ohne Schaden überstehen). Wegen der geringen Größe zeichnen sie sich auch durch hohe Messgeschwindigkeit aus. Sie werden daher z. B. zur Auslösung von Airbags in Fahrzeugen eingesetzt.

Sensoren in MEMS-Technik werden nicht nur für die Messung der (linearen) Beschleunigung, sondern auch für die Messung der Winkelbeschleunigung hergestellt (sogenannte Gyrosensoren).

Weitere „klassische“ Beschleunigungssensoren

  • Dehnungsmessstreifen: Eine weitere Möglichkeit die Bestimmung der Kraft auf die Testmasse, indem die Verformung der Befestigung (z. B. eines Stabes) mittels Dehnungsmessstreifen bestimmt wird (vor allem für niedrige Frequenzen geeignet).
  • Magnetische Induktion: Bei der Bewegung der an einer Feder aufgehängten Testmasse wird durch einen Magneten in einer Spule eine elektrische Spannung induziert, ähnlich wie in einem dynamischen Mikrofon (Tauchspulenmikrofon).

Weblinks

 Commons: Beschleunigungssensor – Sammlung von Bildern, Videos und Audiodateien

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Beschleunigungssensor — B Messer; Accelerometer; Beschleunigungsmesser; G Sensor …   Universal-Lexikon

  • Piezoelektrischer Beschleunigungssensor — Direkter Piezoeffekt: Durch mechanischen Druck verlagert sich der positive (Q+) und negative Ladungsschwerpunkt (Q–). Dadurch entsteht ein Dipol, bzw. eine elektrische Spannung am Element. Piezoelektrizität (auch piezoelektrischer Effekt oder… …   Deutsch Wikipedia

  • Kapazitive Sensoren — arbeiten auf Basis der Veränderung der Kapazität eines einzelnen Kondensators oder eines ganzen Kondensatorsystemes. Diese Änderung der Kapazität kann dabei auf verschiedene Arten erfolgen, die sich meist bereits durch den Verwendungszweck… …   Deutsch Wikipedia

  • Gamecube 2 — Nintendo Wii Hersteller …   Deutsch Wikipedia

  • Kapazitiver Sensor — Kapazitive Sensoren arbeiten auf Basis der Veränderung der Kapazität eines einzelnen Kondensators oder eines ganzen Kondensatorsystemes. Diese Änderung der Kapazität kann dabei auf verschiedene Arten erfolgen, die sich meist bereits durch den… …   Deutsch Wikipedia

  • Nintendo Revolution — Nintendo Wii Hersteller …   Deutsch Wikipedia

  • Nintendo Wii — Hersteller …   Deutsch Wikipedia

  • Revolution (Spielekonsole) — Nintendo Wii Hersteller …   Deutsch Wikipedia

  • WiiConnect24 — Nintendo Wii Hersteller …   Deutsch Wikipedia

  • Accelerometer — Ein Beschleunigungssensor ist ein Sensor (Fühler), der die Beschleunigung misst, indem die auf eine Testmasse wirkende Trägheitskraft bestimmt wird. Somit kann z. B. bestimmt werden, ob eine Geschwindigkeitszunahme oder abnahme stattfindet. Der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”