Besselsche Differentialgleichung

Besselsche Differentialgleichung

Die Besselsche Differentialgleichung ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung. Benannt wurde sie nach dem Mathematiker Friedrich Wilhelm Bessel. Ihre Lösungen heißen Bessel-Funktionen.

Inhaltsverzeichnis

Besselsche Differentialgleichung

Der Bessel-Operator ist ein Differentialoperator zweiter Ordnung, der durch

B_n := x^2 \frac{d^2}{dx^2} + x \frac{d}{dx} + (x^2 - n^2)\, ,

definiert ist, wobei n eine reeller Zahl ist.[1]

Die Besselsche Differentialgleichung ist entsprechend eine gewöhnliche lineare Differentialgleichung zweiter Ordnung, die durch

Bnf = 0

beziehungsweise nach Ausschreiben des Bessel-Operators durch


x^2 \frac{d^2 f}{dx^2} + x \frac{d f}{dx} + (x^2 - n^2)f = 0

definiert ist. Die Lösungen heißen Bessel-Funktionen n-ter Ordnung.

Bessel-Funktionen

Allgemein

Die Bessel-Funktionen erster Gattung für J0, J1 und J2
Die Bessel-Funktionen zweiter Gattung Y0, Y1 und Y2

Die Lösungen der Besselschen Differentialgleichung heißen Bessel-Funktionen. Sie spielen eine wichtige Rolle in der Physik, da die Besselsche Differentialgleichung den radialen Anteil der Laplace-Gleichung bei zylindrischer Symmetrie darstellt. Auf die Bessel-Funktionen trifft man unter anderem bei der Untersuchung von Eigenschwingungen einer kreisförmigen Membran oder Orgelpfeife, der Ausbreitung von Wasserwellen in runden Behältern, der Wärmeleitung in Stäben, der Analyse des Frequenzspektrums von frequenzmodulierten Signalen, der Feldverteilung im Querschnitt von Rundhohlleitern, den stationären Zuständen von Kastenpotentialen und der Intensität von Lichtbeugung an kreisförmigen Löchern. Man zählt die Bessel-Funktionen wegen ihrer vielfältigen Anwendungen in der mathematischen Physik zu den speziellen Funktionen.

Die Besselsche Differentialgleichung besitzt zwei linear unabhängige Lösungen. Für nicht-ganzzahlige n sind Jn und J n linear unabhängige Lösungen. Für ganzzahlige n ist neben der Bessel-Funktion erster Gattung Jn (auch einfach Bessel-Funktion genannt) die Bessel-Funktion zweiter Gattung Yn (auch Weber-Funktion oder Neumann-Funktion genannt) die zweite, linear unabhängige Lösung.

Die Darstellungen der Bessel-Funktionen lauten


J_n(x) = \sum_{r=0}^\infty \frac{(-1)^r (\frac{x}{2})^{2r+n}}{\Gamma(n+r+1)r!} \,
, wobei Γ(x) die Gammafunktion ist, sowie

Y_n(x) := \lim_{p\rightarrow n} \frac{J_p(x)\cos p \pi - J_{-p}(x)}{\sin p \pi} \,
.

Die Bessel-Funktion 2. Gattung hat im Ursprung eine logarithmische Singularität, weshalb sie sich nicht durch eine Potenzreihe darstellen lässt. Durch Ausführung des Grenzüberganges mit der Regel von L’Hospital ergibt sich:

\begin{align}
Y_n(x) =\,& \frac2{\pi}\left(\gamma+\log\frac{x}2\right)J_n(x)
 - \frac1{\pi}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\left(\frac{x}2\right)^{2k-n}\\
 &{}- \frac1{\pi}\sum_{k=0}^{\infty}(-1)^k\frac{H_k+H_{k+n}}{k!(n+k)!}\left(\frac{x}2\right)^{2k+n}
\end{align}

Hierbei ist γ die Eulersche Konstante und Hn die harmonische Reihe.

Weitere Eigenschaften

\frac{n}{x} J_n = \frac{1}{2}(J_{n-1} + J_{n+1}) \,,

J'_n = \frac{1}{2}(J_{n-1} - J_{n+1}) \,
.
Diese Beziehungen gelten auch für die Bessel-Funktion 2. Gattung.
  • Für ganzzahlige n gilt weiterhin:
J_{-n}(x) = (-1)^n J_n(x) = J_n(-x)\,
Die Bessel-Funktion kann in Abhängigkeit zur hypergeometrischen Funktion ausgedrückt werden.
J_n(z)=\frac{(z/2)^n}{(n+1)!}  \;_0F_1 (n+1; -z^2/4).
Dieser Ausdruck hängt mit der Entwicklung der Bessel-Funktion in Abhängigkeit zur Bessel-Clifford-Funktion zusammen.
  • Für alle x \in \R gilt  \sum_{n=-\infty}^\infty J_n(x)^2 = 1 .
  • Für alle n \in \N gilt  \left(-\frac{1}{x}\frac{{\rm d}}{{\rm d}x}\right)^n J_0(x) = \frac{J_n(x)}{x^n} .

Modifizierte Bessel-Funktionen

Die modifizierte Bessel-Funktionen erster Gattung für I0, I1, I2 und I3
Die modifizierte Bessel-Funktionen zweiter Gattung für K0, K1, K2 und K3

Tritt eine Bessel-Funktion nur mit rein imaginären Zahlen auf, so spricht man von modifizierten Bessel-Funktionen.


I_n(x)= i^{-n} J_n(ix)=\sum_{r=0}^\infty \frac{(\frac{x}{2})^{2r+n}}{\Gamma(r+n+1)r!} \,

ist die modifizierte Bessel-Funktion n-ter Ordnung. Sie löst die Differentialgleichung


x^2 y'' + x y' - (x^2 + n^2) y = 0 \,
.

Eine zweite Lösung für diese Differentialgleichung ist


K_n(x)=\lim_{p\rightarrow n}\frac{\pi}{2}\frac{I_{-p}(x)-I_p(x)}{\sin (p \pi)} \,
,

die auch als MacDonald-Funktion bekannt ist.

Hankel-Transformation

Hauptartikel: Hankel-Transformation

Die Hankel-Transformation ist eine Integraltransformation, die eng mit der Fourier-Transformation verwandt ist. Der Integralkern der Hankel-Transformation ist die Bessel-Funktion erster Ordnung Jn, das heißt der Integraloperator lautet

H_n(f)(s) = \int_0^\infty J_n(t s) t f(t) \mathrm{d} t\,.

Eine besondere Eigenschaft der Hankel-Transformation ist, dass mit ihr der Bessel-Operator in einen algebraischen Ausdruck (eine Multiplikation) überführt werden kann.

Literatur

Einzelnachweise

  1. Guido Walz (Hrsg.): Bessel-Operator. In: Lexikon der Mathematik. 1 Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 978-3827404398.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Besselsche Differentialgleichung — Besselsche Differentialgleichung, s. Besselsche Funktionen …   Lexikon der gesamten Technik

  • Besselsche DGL — Die Besselsche Differentialgleichung . ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung. Dabei ist n meistens eine ganze Zahl. Sie ist benannt nach Friedrich Wilhelm Bessel. Inhaltsverzeichnis 1 Bessel Funktionen 1.1 …   Deutsch Wikipedia

  • Besselsche Funktionen — Besselsche Funktionen, auch Zylinderfunktionen genannt, von Bessel bei astronomischen Untersuchungen benutzt, sind Funktionen zweier veränderlichen Größen x und ν, die der u.a. auch bei verschiedenen Problemen der mathematischen Physik… …   Lexikon der gesamten Technik

  • Lineare gewöhnliche Differentialgleichung — Lineare gewöhnliche Differentialgleichungen bzw. lineare gewöhnliche Differentialgleichungssysteme sind eine wichtige Klasse von gewöhnlichen Differentialgleichungen. Inhaltsverzeichnis 1 Definition 2 Spezialfälle 3 Globale Existenz und… …   Deutsch Wikipedia

  • Bessel-Funktion — Die Besselsche Differentialgleichung . ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung. Dabei ist n meistens eine ganze Zahl. Sie ist benannt nach Friedrich Wilhelm Bessel. Inhaltsverzeichnis 1 Bessel Funktionen 1.1 …   Deutsch Wikipedia

  • Bessel-Funktionen — Die Besselsche Differentialgleichung . ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung. Dabei ist n meistens eine ganze Zahl. Sie ist benannt nach Friedrich Wilhelm Bessel. Inhaltsverzeichnis 1 Bessel Funktionen 1.1 …   Deutsch Wikipedia

  • Bessel DGL — Die Besselsche Differentialgleichung . ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung. Dabei ist n meistens eine ganze Zahl. Sie ist benannt nach Friedrich Wilhelm Bessel. Inhaltsverzeichnis 1 Bessel Funktionen 1.1 …   Deutsch Wikipedia

  • Besselfunktion — Die Besselsche Differentialgleichung . ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung. Dabei ist n meistens eine ganze Zahl. Sie ist benannt nach Friedrich Wilhelm Bessel. Inhaltsverzeichnis 1 Bessel Funktionen 1.1 …   Deutsch Wikipedia

  • Bessel — Friedrich Wilhelm Bessel Friedrich Wilhelm Bessel Friedrich Wilhelm Bessel (* 22. Juli 1784 in Minden …   Deutsch Wikipedia

  • Friedrich Bessel — Friedrich Wilhelm Bessel Friedrich Wilhelm Bessel Friedrich Wilhelm Bessel (* 22. Juli 1784 in Minden …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”