Bogenentladung
Lichtbogen zwischen zwei Stahlnägeln

Ein Lichtbogen ist eine sich selbst erhaltende Gasentladung zwischen zwei Elektroden, die eine ausreichend hohe elektrische Potentialdifferenz (=Spannung) aufweisen, um durch Stoßionisation die benötigte hohe Stromdichte aufrechtzuerhalten. Die Gasentladung bildet ein Plasma, in dem die Teilchen (Atome oder Moleküle) teilweise ionisiert sind. Die Ladungsträger haben zur Folge, dass das Gas elektrisch leitfähig wird. Die Plasmen sind quasi neutral, d. h. die Zahl der Ionen und Elektronen ist identisch. Da die schweren Ionen gegenüber den leichten Elektronen wesentlich langsamer sind, sind für den Stromtransport fast ausschließlich die Elektronen relevant.

Inhaltsverzeichnis

Charakteristika

Charakteristisch sind hierbei

  • der im Vergleich zur Glimmentladung relativ geringe Kathodenfall (in der Größenordnung des Anregungs- oder Ionisierungspotentials der beteiligten Atome, ungefähr 10 eV),
  • eine bereichsweise fallende (nicht ohmsche) Strom-Spannungs-Kennlinie,
  • eine im Vergleich zur Glimmentladung hohe Stromdichte in der Entladung,
  • Gas- und Elektronentemperatur sind stark gekoppelt. Es wird näherungsweise das lokale thermische Gleichgewicht erreicht.
  • Die Gasdrücke sind relativ hoch (p > 0,1 bar).
  • Die Gastemperatur liegt bei 5.000 K bis 50.000 K.

Das Phänomen des elektrischen Bogens wurde unmittelbar nach der Herstellung der ersten leistungsfähigen Stromquellen (Voltasche Säule von Alessandro Volta, 1800) etwa zeitgleich durch den Briten Humphry Davy und den Russen Petrov entdeckt. Davy hielt zwei Kohlestifte, die jeweils mit einem Pol einer Voltaschen Säule verbunden waren, zusammen und zog sie nach Beginn des Stromflusses langsam auseinander. Bei waagerechter Anordnung der Stifte, die als Elektroden dienen, brennt das Plasma durch seinen thermischen Auftrieb in Form eines charakteristischen Bogens, der dieser Gasentladung ihren Namen gab. Siehe auch Jakobsleiter.

Lichtbögen benötigen bei Kupferleitungen eine Mindestspannung von etwa 12 V und einem Mindeststrom von etwa 0,4 A. Sie senden typischerweise intensive infrarote, sichtbare und ultraviolette Strahlung aus.

Je nach Betriebsparametern können verschiedene Prozesse maßgeblich für die Emission der Elektronen aus dem Kathodenmaterial verantwortlich sein. Eine wichtige Kenngröße ist dabei die Austrittsarbeit, die geleistet werden muss, damit Elektronen den Festkörper verlassen können. Diese wird bei Lichtbögen durch das vorhandene externe Feld herabgesetzt (Schottky-Effekt oder auch Schottky-Erniedrigung). Weitere relevante Prozesse bei der Elektronenemission können die folgenden sein:

  • Thermoemission (auch thermionische Emission, glühelektrischer Effekt, Edison-Effekt, Richardson-Effekt oder auch Edison-Richardson-Effekt genannt),
  • Feldemission (das vorhandene elektrische Feld ermöglicht den Elektronen quantenmechanisches Tunneln aus dem Festkörper heraus),
  • Thermionische Feldemission (starke elektrische Felder führen zu weiteren Effekten, die durch die obigen Punkte nicht abgedeckt werden),
  • Sekundärelektronenemission (durch den Kathodenfall werden positive Ionen zur Kathode hin beschleunigt. Bei ihrem Auftreffen erwirken sie die Freisetzung von Elektronen).

Leistungsbilanz

In einem Lichtbogen wird das Plasma durch Stöße der im elektrischen Feld beschleunigten Elektronen und den schweren Teilchen aufgeheizt. Der Wärmetransport nach außen erfolgt durch Wärmeleitung. Darüber hinaus müssen in der Leistungsbilanz Emission und Absorption der Strahlung berücksichtigt werden. Die Leistungsbilanz lautet:

 \rho \cdot \frac{\mathrm{d}h}{\mathrm{d}t} = \sigma \cdot E^2 + \operatorname{div} \kappa \cdot \operatorname{grad} T - e + a
h: Enthalpie
T: Temperatur
ρ: Dichte
σ: elektrische Leitfähigkeit
E: elektrisches Feld
κ: Wärmeleitfähigkeit
e: emittierte Strahlung
a: absorbierte Strahlung

Unter Berücksichtigung der Geschwindigkeit eines Volumenelementes kann für die Enthalpieänderung geschrieben werden:

\rho \cdot \frac{\mathrm{d}h}{\mathrm{d}t} = \rho \cdot \frac{\partial h}{\partial t} + \rho \cdot \vec v \cdot \operatorname{grad} h

Betrachtet man nun einen vertikal angeordneten stationär betriebenen zylindrischen Lichtbogen, dann kann die Leistungsbilanz einfacher dargestellt werden. Wird die Strömung (in diesem Fall die Aufwärtsbewegung eines Volumenelementes) und die Strahlungstermen vernachlässigt, erhält man eine Leistungsbilanz, die die Aufheizung und die rotationssymmetrische Wärmeleitung nach außen beschreibt:

\sigma \cdot E^2 = \frac{1}{r} \, \frac{\mathrm{d}}{\mathrm{d}r} \, r \kappa \, \frac{\mathrm{d}T}{\mathrm{d}r} = 0
r: Kreiskoordinate

Das Temperaturprofil des Bogens hängt vom eingesetzten Gas ab. Molekülgase werden im Lichtbogen dissoziiert. In den radialen Bereichen, in denen die Dissoziation der Moleküle stark ansteigt ist auch die Wärmeleitfähigkeit des Gases sehr hoch und dementsprechend ist auch der Temperaturgradient steiler als bei der Verwendung von einatomigen Edelgasen.

Technische Anwendungen

Wassergekühlter Kaskadenlichtbogen für Forschungszwecke; Das Endladungsgefäß besteht aus dünnen wassergekühlten Kupferplatten, die gegeneinander elektrisch isoliert sind. In der zentralen Bohrung der Platten wird der Bogen durch Kurzschließen der Elektroden gezündet. Der Strom wird auf jeweils 4 Kathoden und Anoden durch Vorwiderstände aufgeteilt, so dass in der Bogenachse das radialsymmetrische Plasma spektral untersucht werden kann. An den Endtöpfen sind zentrale Beobachtungsfenster eingebaut. Die Strahlung wird über eine Linsenanordnung auf den Eintrittsspalt eines Monochromators fokussiert. Das Gefäß kann mit unterschiedlichen Gasen durchströmt werden und durch Austausch der Kupferplatten kann der Querschnitt des Lichtbogens und damit auch die Plasmatemperatur geändert werden.

Leuchtmittel

Lichtbögen wurden zuerst in der Beleuchtungstechnik genutzt: Bogenlampen sind die ältesten elektrischen Lichtquellen. Davy machte seine ersten dahingehenden Beobachtungen vermutlich bereits um 1802, veröffentlichte diese aber erst später (1812). Die Lichtbögen wurden zuerst offen in Luft betrieben. Es wurden Graphitelektroden eingesetzt, die relativ schnell abbrannten.

In Quecksilberhochdrucklampen wird Argon mit einem Druck von einigen mbar und Quecksilber eingesetzt. Die Lampe zündet durch einen Hochspannungsimpuls und bildet erst eine Glimmentladung aus. Mit steigender Temperatur verdampft das Quecksilber, der Druck nimmt entsprechend dem Quecksilberdampfdruck zu und die Entladung geht in eine Bogenentladung über. Im Spektrum des Lichtbogens dominieren die starken Quecksilberlinien.

Die Xenon-Kurzbogenlampe wird in Kinoprojektoren und starken Scheinwerfern eingesetzt. Xenon hat im sichtbaren Spektrum viele optische Übergänge. In Verbindung mit hohen Entladungsdrücken wird eine Linienverbreiterung erreicht, so dass eine sehr hohe Strahlungsdichte emittiert wird. Die Strahlungsquelle hat eine geringe räumliche Ausdehnung und kann daher gut mit Reflektoren und Linsen kollimiert werden.

Elektroschweißen

Beim 'WIG'-Schweißverfahren (Wolfram-Inert-Gas-Schweißen) werden gas- oder wassergekühlte Wolfram-Elektroden eingesetzt, und es wird ein Argon-Schutzgasplasma erzeugt. Der Schweißzusatzstoff wird über das Plasma eines Langlichtbogens abgeschmolzen, das gleichzeitig die Kanten der Grundwerkstoffes aufschmilzt.

Beim Elektroschweißen ist der Abbrand des Elektrodenwerkstoffes dagegen erwünscht. Elektrode und die Kanten des Grundwerkstoffes werden beim Schweißen aufgeschmolzen und bilden die Schweißnaht.


Stahlherstellung

Eine bedeutende Anwendung sind Lichtbogenofen zum Herstellen von Stahl in Elektrostahlwerken.

Erzeugung dünner metallischer Schichten

Eine weitere Anwendung ist die Erzeugung dünner metallischer Schichten mittels Lichtbogenverdampfung bei der Physikalische Gasphasenabscheidung. Hierbei wird mittels der kinetischen Energie der Elektronen des Lichtbogens Atome bzw. Moleküle aus einen festen Material (Target) herausgelöst und auf einen Substrat abgeschieden. Dieses Verfahren wird unter anderem bei verschleißmindernden Titannitridschichten auf Schneidwerkzeugen eingesetzt.

Chemische Analyse

Eine klassische Anwendung erfährt der Lichtbogen in der Spektralanalyse zur Bestimmung von Haupt-und Spurenbestandteilen hauptsächlich von Feststoffen. Das zu analysierende Material wird im Lichtbogen verdampft, wobei die entsprechenden Spektrallinien angeregt werden. Die Bestimmung der Linien und deren mit der jeweiligen Elementkonzentration korrelierenden Intensitäten erfolgt in einem optischen Spektrometer (OES). Hauptsächlich werden Gleichstrombögen mit Kohle- oder Graphitelektroden angewandt.

Zukunftsanwendungen

Antriebsmittel

Eine Anwendung in der Zukunft könnte das Lichtbogentriebwerk sein.

Müllentsorgung

Die US-Firma Startech betreibt in Bristol, Connecticut eine Pilotanlage zur Plasmavergasung von Müll durch Lichtbogen. Ins Innere des Reaktionskessels ragen zwei Elektroden, die unter Starkstrom stehen. Die hohe Spannung verwandelt die Luft dazwischen in elektrisch leitendes Plasma. Bis zu 17 000 Grad Celsius werden erreicht, an den Wänden der Kammer sind es noch 1700 Grad. Die Moleküle der eingebrachten Stoffe zerfallen in ihre Atome: Die anorganischen Bestandteile des Mülls schmelzen und sammeln sich am Boden des Reaktors. Die organischen Stoffe dagegen - Kunststoffe- verpuffen zu Gas. Neben Wasserstoff ist darin vor allem Kohlenmonoxid enthalten.

Problematisch an dem Verfahren ist der exorbitant hohe Energieverbrauch. In nächster Zukunft dürfte es lediglich bei der Sondermüllbeseitigung wirtschaftlich sein.[1]

Lichtbogen-Plasma-Reaktor

Hierbei handelt es sich um ein Verfahren zur Herstellung von Ethin aus Kohle.

Das Verfahren wurde 1980 als Gemeinschaftsprojekt der Firma Hüls AG (Chemiepark Marl) mit der DMT-Gesellschaft zur Gewinnung von Acetylen entwickelt. Die Kohle muss vor der Reaktion sehr klein gemahlen (Teilchengröße: 100 μm) werden. Bei sehr hohen Temperaturen 1000-2000 K im Lichtbogenplasma (Kathode aus Wolfram mit ThO2 dotiert, Anode aus Kupfer) wird ein Gemisch von Wasserstoff und Kohlepartikeln bei kurzen Kontaktzeiten (wenige ms) zur Reaktion gebracht, durch Quenchen mit Wasser entsteht Ethin. Der Kohledurchsatz der Pilotanlage betrug ca. 350-500 kg/h bei einem Kohleumsatz von 50 %, einer Acetylenausbeute von 20/100 kg Kohle, einer Stromstärke von 1000 A, einer Spannung von 1250 V.[2] Im Produktgemisch befindet sich neben Acetylen (Gew. 25,0 %) noch ein erheblicher Anteil Kohlenmonoxid (Gew.19,9%) und Wasserstoff (Gew. 33,6 %).

Das Verfahren ist bei Vorliegen von preisgünstiger Kohle und billigem Strom in einigen Regionen der Welt möglicherweise zur Herstellung von Kohlenwasserstoffverbindungen interessant.

Unerwünschte Nebenwirkungen

Spannungsüberschlag

Bei ungenügendem Abstand oder ungenügender Isolation zwischen zwei elektrischen Potenzialen kann es zu einem ungewollten Spannungsüberschlag kommen, in dessen Verlauf ein Lichtbogen entsteht. Dieser Spannungsüberschlag kann auch in einem elektrischen Bauteil selber entstehen, weil sich die Kontakte zu wenig schnell trennen, oder die Isolationsschicht zwischen den stromführenden Teilen ihrer Isolierfähigkeit beraubt wurde.

Die Lichtbögen, die bei Spannungsüberschlag entstehen, setzen in der Regel die Lebensdauer des Bauteils massiv herab und können es im schlimmsten Fall auch zerstören.

Schalttechnik

In elektrischen Schaltern sind Lichtbögen unerwünscht. Sie bilden sich insbesondere dann, wenn der Abreißfunke bei hohen Strömen das Kontaktmaterial lokal soweit erhitzt, dass die Austrittsarbeit der Elektronen überwunden wird. Der entstehende Lichtbogen muss so schnell wie möglich zum Verlöschen gebracht werden, um Kontaktabbrand und thermische Schäden zu vermeiden. In Leitungsschutzschaltern wird dazu der Spannungsbedarf des Bogens durch Auseindanderziehen der Kontakte, Kühlen des Plasmas durch Löschbleche und magnetisches Anblasen so weit erhöht, dass der Bogen beim Stromnulldurchgang verlöscht. Leistungsschalter und Lasttrennschalter arbeiten oft, neben Bauformen mit Öl- oder Luftdrucklöschung, mit sogenanntem Hartgas (ein Kunststoff, der bei sich bei Einwirkung der Temperatur des Lichtbogens unter Abgabe des Löschgases zersetzt) oder einer Schwefelhexafluorid- (SF6 )-füllung. Das Schutzgas SF6 bewirkt eine Kühlung des Lichtbogens und zusätzlich einen hohen Spannungsabfall zur Löschung des hohen Kurzschlussstromes. Damit verlöscht der Abschaltlichtbogen nach einer halben oder wenigen Perioden der Wechselspannung.

Literaturstellen

  1. Manfred Dworschak: Heiß wie die Sonne. In: DER SPIEGEL. 16, 2007, S. 166
  2. Harald Brachold, Cornelius Peukert und Hans Regner: Lichtbogen-Plasma-Reaktor für die Herstellung von Acetylen aus Kohle, Chem. -Ing.-Tech. 65 (1993), Nr. 3, S. 293-297

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Bogenentladung — Bo|gen|ent|la|dung ↑ Gasentladung. * * * Bogenentladung,   elektrische Gasentladung hoher Stromdichte (bis zu einigen 1 000 A/cm2) und Leuchtdichte (bis zu 1 500 cd/mm2). Eine Kohlebogenentladung bildet sich z. B. aus, wenn man zwei Kohlestäbe,… …   Universal-Lexikon

  • Bogenentladung — lankinis išlydis statusas T sritis automatika atitikmenys: angl. arc discharge vok. Bogenentladung, f; Lichtbogenentladung, f rus. дуговой разряд, m pranc. décharge d arc, f; décharge en arc, f …   Automatikos terminų žodynas

  • Bogenentladung — lankinis išlydis statusas T sritis fizika atitikmenys: angl. arc discharge; electric arc in gas vok. Bogenentladung, f rus. дуговой разряд, m; дуговой разряд в газе, m pranc. décharge d’arc, f; décharge en régime d’arc, f; décharge par arc, f …   Fizikos terminų žodynas

  • Hochdruck-Bogenentladung — didžiaslėgis lankinis išlydis statusas T sritis radioelektronika atitikmenys: angl. high pressure arc discharge vok. Hochdruck Bogenentladung, f rus. дуговой разряд высокого давления, m pranc. décharge en arc à haute pression, f …   Radioelektronikos terminų žodynas

  • Gasableiter — Ein Gasableiter ist eine Gasentladungsröhre, die als Überspannungsableiter dem Schutz vor Überspannungsimpulsen dient, wie sie z. B. aufgrund von Blitz Einschlägen in der Nähe von Netzen (Telefonnetz, Stromnetz) in diesen auftreten können.… …   Deutsch Wikipedia

  • Bogenlicht — Gasentladungslampen sind Lichtquellen, die zur Lichterzeugung eine Gasentladung verwenden und dabei die spontane Emission durch atomare oder molekulare elektronische Übergänge und die Rekombinationsstrahlung eines durch elektrische Entladung… …   Deutsch Wikipedia

  • Entladungslampe — Gasentladungslampen sind Lichtquellen, die zur Lichterzeugung eine Gasentladung verwenden und dabei die spontane Emission durch atomare oder molekulare elektronische Übergänge und die Rekombinationsstrahlung eines durch elektrische Entladung… …   Deutsch Wikipedia

  • Funke (Entladung) — Hochspannungsentladung über einen Isolator im Hochspannungsinstitut von AEG in Kassel …   Deutsch Wikipedia

  • Funkenentladung — Hochspannungsentladung über einen Isolator im Hochspannungsinstitut von AEG in Kassel Funke einer Zündkerze …   Deutsch Wikipedia

  • Funkenschlag (Funke) — Hochspannungsentladung über einen Isolator im Hochspannungsinstitut von AEG in Kassel Funke einer Zündkerze …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”