Bonferroni-Ungleichung

Die Bonferroni-Ungleichungen sind Formeln, die zur Abschätzung der Wahrscheinlichkeit des Durchschnitts bzw. der Vereinigung von Ereignissen dienen.

Inhaltsverzeichnis

Benennung nach Bonferroni

Die Bonferroni-Ungleichungen werden nicht unbedingt zurecht nach Carlo Emilio Bonferroni benannt.[1]

Bonferroni war vermutlich nicht der Urheber dieser Ungleichungen, benutzte sie aber, um einen statistischen Schätzer zu definieren (Bonferroni-Methode). Die Benennung nach ihm ist daher vor allem in statistischen Kreisen beliebt. Aufgrund ihrer Einfachheit sind die Ungleichungen mit großer Wahrscheinlichkeit schon vor ihm bekannt gewesen.[2]

Die erste der folgenden Ungleichungen wird häufiger nach George Boole als Boolesche Ungleichung bezeichnet; oft werden die Ungleichungen aber auch ohne Namensbezug genannt.

Erste Ungleichung

Im Folgenden seien Ei beliebige Teilmengen (Ereignisse) in einem Wahrscheinlichkeitsraum Ω. \scriptstyle{\Pr(E_i)} bezeichne die Wahrscheinlichkeit von Ereignis Ei und \scriptstyle{\bigcup_{i=1}^nE_i} die Vereinigungsmenge der Ereignisse \scriptstyle{E_1,..,E_n}. Dann gilt:


\Pr\left( \bigcup_{i=1}^nE_i \right) \leq \sum_{i=1}^n \Pr\left(E_i\right)



.

Es gilt auch allgemeiner:


\Pr\left( \bigcup_{i=1}^\infty E_i \right) \leq \sum_{i=1}^\infty \Pr\left(E_i\right)

Diese Ungleichungen werden auch Boolesche Ungleichungen genannt.

Beweis

Zum Beweis der ersten Variante genügt eine vollständige Induktion nach n. Der Induktionsanfang ergibt sich unmittelbar aus


\Pr \left( E_1 \cup E_2 \right) 
= \frac{|E_1 \cup E_2|}{|\Omega|}
= \frac{|E_1| + |E_2| - |E_1 \cap E_2|}{|\Omega|}

\leq \frac{|E_1| + |E_2|}{|\Omega|}
= \frac{|E_1|}{|\Omega|} + \frac{|E_2|}{|\Omega|}
= \Pr \left( E_1 \right) + \Pr \left( E_2 \right) 
.

Sei für den Induktionsschritt 
\Pr\left( \bigcup_{i=1}^{n-1}E_i \right) \leq \sum_{i=1}^{n-1} \Pr\left(E_i\right)
vorausgesetzt. Es folgt dann die Behauptung vermöge:


\Pr\left( \bigcup_{i=1}^{n}E_i \right)
= \Pr\left( E_n \cup \bigcup_{i=1}^{n-1}E_i \right)
\leq \Pr\left( E_n \right) + \Pr \left( \bigcup_{i=1}^{n-1}E_i \right)

\leq \Pr\left( E_n \right) + \sum_{i=1}^{n-1} \Pr\left(E_i\right)
= \sum_{i=1}^{n} \Pr\left(E_i\right)
.

Zweite Ungleichung

Im Folgenden seien wieder Ei beliebige Teilmengen (Ereignisse) in einem Wahrscheinlichkeitsraum Ω. Ferner bezeichne  \overline{E_i} = \Omega \setminus E_i das Komplement von Ei. Dann folgt:


\Pr\left(\bigcap_{i=1}^nE_i\right) \geq 1-\sum_{i=1}^nPr\left(\overline{E_i}\right)

Beispiele

  • Sei Ω = {1,2,3,4,5,6} die Menge der Ergebnisse eines Würfelwurfs. Bezeichne E1 = {2,4,6} das Ereignis, eine gerade Zahl zu würfeln und E2 = {5,6} das Ereignis, wenigstens eine 5 zu würfeln. Offensichtlich gilt \Pr(E_1) = \frac{1}{2} und \Pr(E_2) = \frac{1}{3}. Nach der ersten Bonferroni-Ungleichung gilt für das Ereignis, eine gerade Zahl oder wenigstens eine 5 zu würfeln

\Pr \left( E_1 \cup E_2 \right)
\leq \Pr \left( E_1 \right) + \Pr \left( E_2 \right) 
= \frac{1}{2} + \frac{1}{3} = \frac{5}{6} .
  • Sei das Szenario wie im vorausgehenden Beispiel. Nach der zweiten Bonferroni-Ungleichung gilt für das Ereignis, eine gerade Zahl und mindestens eine 5 zu würfeln

\Pr \left( E_1 \cap E_2 \right)
\geq 1 - \Pr \left( \overline{E_1} \right) - \Pr \left( \overline{E_2} \right) 
= 1 - (1-\frac{1}{2}) - (1-\frac{1}{3}) = - \frac{1}{6}
Das Ergebnis liefert also keine brauchbare Aussage, da jede Wahrscheinlichkeit ohnehin größer oder gleich Null ist. Für das Ereignis, eine gerade Zahl und weniger als eine 5 zu würfeln folgt jedoch

\Pr \left( E_1 \cap \overline{E_2} \right)
\geq 1 - \Pr \left( \overline{E_1} \right) - \Pr \left( E_2 \right) 
= 1 - (1-\frac{1}{2}) - (1-\frac{2}{3}) = \frac{1}{6} .

Literatur

Einzelnachweise

  1. Jürgen Bortz: Statistik für Human- und Sozialwissenschaftler. 6. Auflage. Springer, 2005, S. 129.
  2. J. Galambos: Bonferroni inequalities. In: Michiel Hazewinkel (Hrsg.): Encyclopaedia of Mathematics. Springer-Verlag, Berlin 2002, ISBN 1-4020-0609-8.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Bonferroni-Ungleichungen — Die Bonferroni Ungleichungen sind Formeln, die zur Abschätzung der Wahrscheinlichkeit des Durchschnitts bzw. der Vereinigung von Ereignissen dienen. Inhaltsverzeichnis 1 Benennung nach Bonferroni 2 Erste Ungleichung 2.1 Beweis …   Deutsch Wikipedia

  • Bonferroni-Korrektur — Die Bonferroni Methode oder Bonferroni Korrektur (nach Carlo Emilio Bonferroni) gibt es in der mathematischen Statistik. Mit ihrer Hilfe wird die Alphafehler Kumulierung bei multiplen Paarvergleichen neutralisiert. Sie besagt, dass, wenn man n… …   Deutsch Wikipedia

  • Bonferroni Methode — Die Bonferroni Methode oder Bonferroni Korrektur (nach Carlo Emilio Bonferroni) gibt es in der mathematischen Statistik. Mit ihrer Hilfe wird die Alphafehler Kumulierung bei multiplen Paarvergleichen neutralisiert. Sie besagt, dass, wenn man n… …   Deutsch Wikipedia

  • Bonferroni-Methode — Die Bonferroni Methode oder Bonferroni Korrektur (nach Carlo Emilio Bonferroni) gibt es in der mathematischen Statistik. Mit ihrer Hilfe wird die Alphafehler Kumulierung bei multiplen Paarvergleichen neutralisiert. Sie besagt, dass, wenn man n… …   Deutsch Wikipedia

  • Bonferroni — Carlo Emilio Bonferroni (* 28. Januar 1892 in Bergamo; † 18. August 1960 in Florenz) war ein italienischer Mathematiker, der in der Versicherungsmathematik für seine Ungleichungen und die Bonferroni Methode bekannt ist. Er war Professor in Turin …   Deutsch Wikipedia

  • Ungleichung — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Bitte hilf mit, die Mängel dieses… …   Deutsch Wikipedia

  • Boolesche Ungleichung — Die Bonferroni Ungleichungen sind Formeln, die zur Abschätzung der Wahrscheinlichkeit des Durchschnitts bzw. der Vereinigung von Ereignissen dienen. Inhaltsverzeichnis 1 Benennung nach Bonferroni 2 Erste Ungleichung 2.1 Beweis …   Deutsch Wikipedia

  • Bonferroniungleichung — Die Bonferroni Ungleichungen sind Formeln, die zur Abschätzung der Wahrscheinlichkeit des Durchschnitts bzw. der Vereinigung von Ereignissen dienen. Inhaltsverzeichnis 1 Benennung nach Bonferroni 2 Erste Ungleichung 2.1 Beweis …   Deutsch Wikipedia

  • Bonferroniungleichungen — Die Bonferroni Ungleichungen sind Formeln, die zur Abschätzung der Wahrscheinlichkeit des Durchschnitts bzw. der Vereinigung von Ereignissen dienen. Inhaltsverzeichnis 1 Benennung nach Bonferroni 2 Erste Ungleichung 2.1 Beweis …   Deutsch Wikipedia

  • Alpha-Inflation — Die Alphafehler Kumulierung, häufig auch α Fehler Inflation, bezeichnet in der Statistik die globale Erhöhung der Alpha Fehler Wahrscheinlichkeit (Fehler 1. Art) durch multiples Testen in derselben Grundgesamtheit. Inhaltsverzeichnis 1 Mehrfaches …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”