Bose-Flüssigkeit

Bose-Flüssigkeit
Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) versehen. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Bitte entferne erst danach diese Warnmarkierung.

Eine Quantenflüssigkeit ist eine Flüssigkeit, in der Quanteneffekte auftreten und die nicht mehr mit der klassischen statistischen Mechanik beschrieben werden kann.

Im klassischen Bereich ist die kinetische Energie E=\frac{p^2}{2m} je Teilchen der Atommasse m von der Größenordnung kT, so dass sich für den Impuls p \simeq \sqrt{m k T} und für die Wellenlänge (nach de Broglie λ = h / p) \lambda\simeq\frac{h}{\sqrt{m k T}} ergeben.

Deshalb sind Quanteneffekte für niedrige Temperaturen T zu erwarten, die umso stärker sind, je kleiner die Atommassen m sind. Nach der klassischen Mechanik müssten alle Substanzen in der Nähe von T = 0 kristallisieren, da keine kinetische Energie mehr vorhanden ist und Atome wegen der Forderung nach minimaler potentieller Energie stets in einer regulären Gitterstruktur angeordnet sein sollten.

Die Nullpunktsenergie ist bei Quantenflüssigkeiten jedoch so groß, dass kein Übergang des Systems in die feste Phase erlaubt ist.

Quantenflüssigkeiten können Suprafluidität aufweisen und lassen sich nach der zugrunde liegenden Statistik einteilen in:

  • Fermi-Flüssigkeiten (z. B. flüssiges 3He oder Leitungselektronen in Metallen im Dreidimensionalen)
  • Bose-Flüssigkeiten (z. B. flüssiges 4He).

Die Existenz des flüssigen Heliums bei beliebig niedrigen Temperaturen ist ein makroskopischer Quanteneffekt.

Im Eindimensionalen tritt an die Stelle der Fermi-Flüssigkeit die Luttingerflüssigkeit, eine spezielle Quantenflüssikeit, die wegen ihrer ungewöhnlichen Eigenschaften in einem besonderen Artikel beschrieben ist.

1998 bekamen Robert B. Laughlin (US), Horst Ludwig Störmer (DE) und Daniel Chee Tsui (US) den Physik-Nobelpreis "für ihre Entdeckung einer neuen Art von Quantenflüssigkeit mit fraktionell geladenen Anregungen". (Es geht dabei im Wesentlichen um den gebrochenzahligen Quanten-Hall-Effekt.)


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Bose-Einstein-Kondensation — Das Bose Einstein Kondensat ist ein extremer Aggregatzustand eines Systems ununterscheidbarer Teilchen, in dem sich der überwiegende Anteil der Teilchen im selben quantenmechanischen Zustand befindet. Dies ist nur möglich, wenn die Teilchen… …   Deutsch Wikipedia

  • Bose-Einstein Kondensat — Das Bose Einstein Kondensat ist ein extremer Aggregatzustand eines Systems ununterscheidbarer Teilchen, in dem sich der überwiegende Anteil der Teilchen im selben quantenmechanischen Zustand befindet. Dies ist nur möglich, wenn die Teilchen… …   Deutsch Wikipedia

  • Bose-Einstein-Kondensat — Das Bose Einstein Kondensat ist ein extremer Aggregatzustand eines Systems ununterscheidbarer Teilchen, in dem sich der überwiegende Anteil der Teilchen im selben quantenmechanischen Zustand befindet. Das ist nur möglich, wenn die Teilchen… …   Deutsch Wikipedia

  • Flüssigkeit — Teilchenmodell einer Flüssigkeit Eine Flüssigkeit ist Materie im flüssigen Aggregatzustand, nach einer makroskopischen Definition ein Stoff, der einer Formänderung so gut wie keinen, einer Volumenänderung hingegen einen recht großen Widerstand… …   Deutsch Wikipedia

  • Einstein-Bose-Kondensat — Das Bose Einstein Kondensat ist ein extremer Aggregatzustand eines Systems ununterscheidbarer Teilchen, in dem sich der überwiegende Anteil der Teilchen im selben quantenmechanischen Zustand befindet. Dies ist nur möglich, wenn die Teilchen… …   Deutsch Wikipedia

  • Einstein-bose-kondensat — Das Bose Einstein Kondensat ist ein extremer Aggregatzustand eines Systems ununterscheidbarer Teilchen, in dem sich der überwiegende Anteil der Teilchen im selben quantenmechanischen Zustand befindet. Dies ist nur möglich, wenn die Teilchen… …   Deutsch Wikipedia

  • Fermi-Flüssigkeit — Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) versehen. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und… …   Deutsch Wikipedia

  • Hyperfluidität — Helium II kriecht an der Wand des inneren Gefäßes hoch nach einer gewissen Zeit würden sich die Flüssigkeitsstände in den Behältern angleichen. Der Rollin Film bedeckt auch die Wand des großen Behälters, wäre er nicht geschlossen, so würde der… …   Deutsch Wikipedia

  • Superfluid — Helium II kriecht an der Wand des inneren Gefäßes hoch nach einer gewissen Zeit würden sich die Flüssigkeitsstände in den Behältern angleichen. Der Rollin Film bedeckt auch die Wand des großen Behälters, wäre er nicht geschlossen, so würde der… …   Deutsch Wikipedia

  • Superfluidität — Helium II kriecht an der Wand des inneren Gefäßes hoch nach einer gewissen Zeit würden sich die Flüssigkeitsstände in den Behältern angleichen. Der Rollin Film bedeckt auch die Wand des großen Behälters, wäre er nicht geschlossen, so würde der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”