Bra-Ket

Die Kunstwörter Bra und Ket bezeichnen eine spezielle Tensornotation, die insbesondere zur Bezeichnung von Zustandsvektoren in der Quantenmechanik verwendet wird. Der Vorteil dieser Notation besteht darin, dass sie koordinatenfrei ist. Die Gleichungen lassen sich ganz allgemein aufschreiben und man kann später die Koordinaten wählen, die für die Lösung des Problems am besten geeignet sind.

Paul Dirac selbst erfand sowohl die Schreibweise als auch die Benennung, die auf die spitze Klammer (bracket) anspielt, mit der man oft das Skalarprodukt \lang v,w \rang zweier Vektoren bezeichnet.

In der Bra-Ket-Notation schreibt man die Vektoren eines Vektorraums V auch außerhalb eines Skalarprodukts mit einer spitzen Klammer als Ket | v \rang. Jedem Ket | v \rang entspricht ein Bra \lang v |, der dem Dualraum V * angehört, also eine lineare Abbildung von V in den zu Grunde liegenden Körper K repräsentiert, und umgekehrt. Das Ergebnis der Operation eines Bras \lang v | auf einen Ket | w \rang wird \lang v | w \rang geschrieben, womit der Zusammenhang mit der konventionellen Notation des Skalarprodukts hergestellt ist.

Die mathematische Rechtfertigung für die Bra-Ket-Notation ergibt sich aus einem Satz über Hilberträume, den F. Riesz und M. Fréchet 1907 unabhängig voneinander bewiesen. Er besagt unter anderem, dass ein Hilbertraum und sein topologischer Dualraum isometrisch isomorph zueinander sind.

Inhaltsverzeichnis

Beispiele

Sei v ein Vektor eines komplexen m-dimensionalen Vektorraums ({}_{v \in \C^m}). Der Ket-Ausdruck {}_{\left| v \right\rangle} kann als vertikaler Vektor mit komplexen Elementen {}_{v_n} ({}_{v_n \in \C}) dargestellt werden

\left| v \right\rangle \Rightarrow \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \end{pmatrix}

Der Bra-Ausruck {}_{\left\langle v \right|} kann demnach als horizontaler Vektor mit den konjugierten Werten dargestellt werden

\left\langle v \right| \Rightarrow \begin{pmatrix} v_1^* && v_2^* && v_3^* && \cdots && v_m^* \end{pmatrix}

Durch die Notation

|e^{-}\rangle = |1s\uparrow \rangle

kann ein Elektron im Zustand 1s mit Spin up des Wasserstoffatoms bezeichnet werden.


Der Polarisationszustand eines Photons kann als Überlagerung zweier Basiszustände, z. B. |V\rangle (vertikal polarisiert) und |H\rangle (horizontal polarisiert) interpretiert werden:

|\gamma\rangle = \alpha \cdot |V\rangle + \beta \cdot |H\rangle

Skalarprodukt

Das Skalarprodukt eines Bra \langle\phi| mit einem Ket |\psi\rangle wird in Bra-Ket Notation geschrieben als

\langle\phi, \psi\rangle =: \langle\phi| \psi\rangle

Für beliebige komplexe Zahlen c1 und c2 gilt:

\langle\phi| \; \bigg( |c_1\cdot\psi_1\rangle + |c_2\cdot\psi_2\rangle \bigg) = c_1\langle\phi|\psi_1\rangle + c_2\langle\phi|\psi_2\rangle. (Linearität)
\bigg(\langle c_1\cdot\phi_1| + \langle c_2\cdot\phi_2|\bigg) \; |\psi\rangle = c_1^*\langle\phi_1|\psi\rangle + c_2^*\langle\phi_2|\psi\rangle. (Antilinearität)

Aufgrund der Dualitätsbeziehung gilt weiterhin

\langle\psi|\varphi\rangle = \langle\varphi|\psi\rangle^* (komplexe Konjugation)

Tensorprodukt

Das Tensorprodukt eines Ket |\phi\rangle mit einem Bra \langle\psi| wird geschrieben als

 \bold{A}\ \  = \ \  \phi \otimes \psi \ \  =: \ \ |\phi\rangle\langle\psi|

Im Fall gewöhnlicher Vektoren entspricht das Tensorprodukt einer Matrix.

Für eine vollständige Orthonormalbasis \{|1\rangle,|2\rangle,...,|N\rangle \} führt die Operation


    |1\rangle \langle1| |\psi\rangle =  \langle1|\psi \rangle |1\rangle = c_1 |1\rangle

eine Projektion auf den Basiszustand  |1 \rangle aus. Dies definiert den Projektionsoperator auf den Unterraum des Zustands  |1 \rangle :

 |1\rangle \langle1|

Eine besonders wichtige Anwendung der Multiplikation von Ket mit Bra ist der Einheitsoperator I, der sich als Summe über die Projektionsoperatoren ergibt als

I=\sum_{n=1}^N |n\rangle \langle n|.

Dieses ist insbesondere deshalb von so herausragender Bedeutung, da man damit jeden Zustand  |a\rangle in einer beliebigen Basis entwickeln kann.

Ein Beispiel einer Basisentwicklung durch Einschieben der Eins:

 |a\rangle = I | a\rangle  = \sum_{n=1}^N |n\rangle \underbrace{\langle n| a\rangle}_{=:\alpha_n} = \sum_{n=1}^N \alpha_n | n \rangle

Dies ist die Darstellung des Zustands-Kets |a\rangle in der n-Basis durch das sogenannte Einschieben der Eins (womit die Einheitsmatrix

I=\sum_{n=1}^N |n\rangle \langle n|.

gemeint ist).

Dass dies immer funktioniert, ist eine unmittelbare Konsequenz der Vollständigkeit des Hilbertraums, in dem die Zustände, also die Kets, 'leben'.


Für eine kontinuierliche Basis ist statt der Summe ein Integral zu bilden. So erhält man beispielsweise für den Ortsraum die Summe über die ganze orthogonale Basis und damit den Einheitsoperator als Integral über den ganzen \mathbb{R}^3:

I= \sum_{\text{Basis}} |\vec{x}\rangle \langle \vec{x}| = \int |\vec{x}\rangle \langle \vec{x}| \, \mathrm{d}^3\! x

Natürlich ist auch mit einer solchen kontinuierlichen Basis eine Basisentwicklung möglich.

Darstellungen in der Quantenmechanik

In der Quantenmechanik arbeitet man häufig mit Projektionen von Zustandsvektoren auf eine bestimmte Basis anstatt mit den Zustandsvektoren selbst.

Die Projektion auf eine bestimmte Basis wird Darstellung genannt. Ein Vorteil davon ist, dass die so erhaltenen Wellenfunktionen komplexe Zahlen sind, für die der Formalismus der Quantenmechanik als partielle Differentialgleichung geschrieben werden kann.

Sei | \vec x \rangle ein Eigenzustand des Ortsoperators  \hat{x} mit der Eigenschaft  \hat{x} | \vec x \rangle =  \vec x | \vec x \rangle.

Die Wellenfunktion \psi(\vec x) ergibt sich durch Projektion als

\psi(\vec x)=\langle \vec{x}|\psi\rangle

Das Skalarprodukt im Ortsraum ist

\langle\psi_1|\psi_2\rangle\ = \int \langle \psi_1 |\vec{x}\rangle\langle \vec{x}|\psi_2\rangle\, \mathrm{d}^3 \! x = \int \psi_1(\vec x)^*\,\psi_2(\vec x)\, \mathrm{d}^3 \! x

Sei | \vec p \rangle ein Eigenzustand des Impulsoperators  \hat{p} mit der Eigenschaft  \hat{p} | \vec p \rangle =  \vec p | \vec p \rangle.

Die Wellenfunktion \psi(\vec p) ergibt sich durch Projektion als

\psi(\vec p)=\langle \vec{p}|\psi\rangle

Das Skalarprodukt im Impulsraum ist

\langle\psi_1|\psi_2\rangle\ = \int \langle \psi_1 |\vec{p}\rangle\langle \vec{p}|\psi_2\rangle\, \mathrm{d}^3 \! p = \int \psi_1(\vec p)^*\,\psi_2(\vec p)\, \mathrm{d}^3 \! p
\langle\psi_1|\hat A|\psi_2\rangle\ = \iint \langle \psi_1 |\vec{x}\rangle\langle\vec{x}|\hat A|\vec{x}'\rangle\ \langle \vec{x}'|\psi_2\rangle\, \mathrm{d}^3 \! x \, \mathrm{d}^3 \! x'\  = \iint  \psi_1(\vec x)^* \hat{A}(\vec{x}, \, \vec{x}')\psi_2(\vec{x}')\, \mathrm{d}^3 \! x \, \mathrm{d}^3 \! x'

Siehe auch


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Bra-ket — …   Википедия

  • Bra-ket notation — Quantum mechanics Uncertainty principle …   Wikipedia

  • Bra-Ket-Notation — Die Kunstwörter Bra und Ket bezeichnen eine spezielle Tensornotation, die insbesondere zur Bezeichnung von Zustandsvektoren in der Quantenmechanik verwendet wird. Der Vorteil dieser Notation besteht darin, dass sie koordinatenfrei ist. Die… …   Deutsch Wikipedia

  • Notation Bra-Ket — Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

  • Notation bra ket — Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

  • Notation bra-ket — La notation bra ket a été introduite par Paul Dirac pour faciliter l’écriture des équations de la mécanique quantique, mais aussi pour souligner l’aspect vectoriel de l’objet représentant un état quantique (voir Axiomes de la mécanique quantique) …   Wikipédia en Français

  • Notación Bra-Ket — La notación bra ket,[1] [2] también conocida como notación de Dirac por su inventor Paul Dirac, es la notación estándar para describir los estados cuánticos en la teoría de la mecánica cuántica. Puede también ser utilizada para denotar vectores… …   Wikipedia Español

  • Notación bra-ket — La notación bra ket es la notación estándar para describir los estados cuánticos en la teoría de la mecánica cuántica. Puede también ser utilizada para denotar vectores abtractos y funcionales lineales en las matemáticas puras. Es así llamada… …   Enciclopedia Universal

  • BRA — steht für Bra (Piemont), ein Ort in der Region Piemont (Italien), Provinz Cuneo Bra (Belgien), ein Ort in der Provinz Lüttich in Belgien Bra (Käse), eine Käsesorte aus Norditalien mit geschützter Herkunftsbezeichnung DOP, benannt nach Bra in der… …   Deutsch Wikipedia

  • Ket — can also refer to: *Ket people, a people of Siberia *Ket language, the language of the Ket people *Ket River, a river in Siberia *Keť, a village in south west Slovakia *Ket (Greyhawk), a fictional nation in the Dungeons and Dragons World of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”