Abbildungsgeometrie

Die Abbildungsgeometrie ist der Zweig der Geometrie, der die geometrischen Abbildungen untersucht. Kennzeichnend für eine bestimmte Klasse von geometrischen Abbildungen sind vor allem die Invarianten der betreffenden Abbildungen, also diejenigen Eigenschaften geometrischer Objekte, die bei Anwendung der betreffenden Abbildungen unverändert bleiben. Diese Sichtweise der Geometrie wurde insbesondere von Felix Klein in seinem Erlanger Programm propagiert.

Zur Abbildungsgeometrie gehören beispielsweise die Ähnlichkeitsabbildungen (mit den Invarianten Streckenverhältnis und Winkelgröße) oder die Kongruenzabbildungen (mit den Invarianten Streckenlänge und Winkelgröße).

Siehe auch


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Lochkamera — Eine Lochkamera ist das einfachste Gerät, um optische Abbildungen zu erzeugen. Sie benötigt dafür keine optische Linse, sondern nur eine dunkle Zelle (eine camera obscura), mit einer kleinen, verschließbaren Öffnung in der Frontwand dieser Zelle …   Deutsch Wikipedia

  • Camera Obscura — Diese Bauform der Camera obscura wurde im 18. Jahrhundert als Skizzierinstrument genutzt. Mit einem Blatt Papier auf der Glasscheibe konnte das betrachtete Objekt direkt kopiert werden. Die Camera Obscura (lat. camera „Gewölbe“; obscura „dunkel“) …   Deutsch Wikipedia

  • Camera obscura — Diese Bauform der Camera obscura wurde im 18. Jahrhundert als Skizzierinstrument genutzt. Mit einem Blatt Papier auf der Glasscheibe konnte das betrachtete Objekt direkt kopiert werden. Die Camera obscura (lat. camera „Gewölbe“; obscura „dunkel“) …   Deutsch Wikipedia

  • Elementargeometrie — René Descartes, La Géometrie (Erstausgabe 1637) Die Geometrie (griech.: γεωμέτρης „Erdmaß“, „Landmessung“) ist ein Teilgebiet der Mathematik. Einerseits versteht man unter „Geometrie“ die zwei und dreidimensionale euklidische Elementargeometrie,… …   Deutsch Wikipedia

  • Geometrisch — René Descartes, La Géometrie (Erstausgabe 1637) Die Geometrie (griech.: γεωμέτρης „Erdmaß“, „Landmessung“) ist ein Teilgebiet der Mathematik. Einerseits versteht man unter „Geometrie“ die zwei und dreidimensionale euklidische Elementargeometrie,… …   Deutsch Wikipedia

  • Geometrische Form — René Descartes, La Géometrie (Erstausgabe 1637) Die Geometrie (griech.: γεωμέτρης „Erdmaß“, „Landmessung“) ist ein Teilgebiet der Mathematik. Einerseits versteht man unter „Geometrie“ die zwei und dreidimensionale euklidische Elementargeometrie,… …   Deutsch Wikipedia

  • Schulgeometrie — René Descartes, La Géometrie (Erstausgabe 1637) Die Geometrie (griech.: γεωμέτρης „Erdmaß“, „Landmessung“) ist ein Teilgebiet der Mathematik. Einerseits versteht man unter „Geometrie“ die zwei und dreidimensionale euklidische Elementargeometrie,… …   Deutsch Wikipedia

  • Algebraische Vielfachheit — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenfunktion — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

  • Eigenfunktionen — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”