Antiproton Decelerator

Antiproton Decelerator
Antiproton Decelerator

Der Antiproton Decelerator
Der Antiproton Decelerator

Typ Speicherring
Zweck entschleunigen von Antiprotonen
Inbetriebnahme 1999
Umfang 188 m
Anfangsimpuls 3,5 GeV/c
Endimpuls 100 MeV/c
Kühlmethoden
Experimente

Der Antiproton Decelerator (AD; deutsch: Antiprotonen Entschleuniger) ist ein Speicherring am CERN in Genf. Ziel des AD ist es die vom Proton Synchrotron erzeugten Antiprotonen abzubremsen und den verschiedenen Antimaterieexperimenten zur Verfügung zu stellen.

Inhaltsverzeichnis

Geschichte

Der Low Energy Antiproton Ring LEAR, an dem der erste Antiwasserstoff hergestellt wurde.

Am CERN wurden seit Ende der 1970er Jahre mit dem Protonenstrahl des Proton Synchrotrons Antiprotonen erzeugt und für Versuche mit Antimaterie in den Anlagen „Antiproton Accumulator“ AA, „Antiproton Collector“ AC und „Low Energy Antiproton Ring“ LEAR eingefangen, gesammelt und abgebremst.[1] 1995 zeigte das PS210 Experiment[2] am LEAR-Speicherring am CERN, dass es prinzipiell möglich ist Antiwasserstoff herzustellen. Allerdings konnten nur 9 Antiwasserstoffatome mit einer kinetischen Energie von ca. 1,2 GeV hergestellt werden[3]. Dies entspricht bei Antiwasserstoff einer Geschwindigkeit von 0,9 c, oder einer Temperatur von 1,4 × 1013 °C. Auf Grund dieser hohen Temperatur spricht man auch von "heißem" Antiwasserstoff. Da man mit Antiatomen auch Theorien wie z.B. das CPT-Theorem und verschiedene Vorhersagen über Antigravitation[4] überprüfen kann, ist es von besonderem Interesse Experimente an Antiwasserstoff durchzuführen. Um Hochpräzisionsexperimente durchführen zu können, benötigt man wesentlich größere Mengen und um mehrere Größenordnungen kältere Antiwasserstoffatome. Dies war mit dem PS210-Aufbau nicht zu erreichen. Im Jahr 1996 wurden die Anlagen zugunsten des LHC stillgelegt.

Wegen des weiterhin großen Interesses an gekühlten Antiprotonen entschied man sich, aufbauend auf den Bauteilen des AC den Antiproton Decelerator zu konstruieren. Die Umbaupläne wurden im Februar 1999 genehmigt. 1999 war der Antiproton Decelerator funktionsfähig und ist fähig, 2 × 107 Antiprotonen mit einer kinetischen Energie von 5,3 MeV zu liefern [5]. Nach der Fertigstellung des AD wurden im Innern des Speicherrings verschiedene Antimaterieexperimente aufgebaut. Viele beschäftigen sich mit der Herstellung von kaltem Antiwasserstoff (z. B. ATHENA, ATRAP), andere nutzen die Antiprotonen für andere Zwecke wie z. B. ASACUSA, welches Messungen an exotischen Atomen vornimmt.

Funktionsweise des Antiproton Decelerator

Antiprotonenerzeugung

Wirkungsquerschnitt für die Proton-Antiproton-Bildung in Abhängigkeit von der primären Protonenenergie.

Da Antiprotonen auf der Erde nicht natürlich vorkommen, müssen sie künstlich erzeugt werden. Dies geschieht üblicherweise durch Paarbildung. Man schießt ein geladenes Teilchen (z.B. ein Proton p) mit hoher kinetischer Energie auf ein Target. Trifft das Strahlteilchen einen Atomkern, so wechselwirkt es mit einem Proton im Kern und ein Teilchen-Antiteilchenpaar wird erzeugt. Unter bestimmten Umständen entsteht ein Proton-Antiprotonpaar.

 p + p + E_\mathrm{kin} \longrightarrow p+p+p+\bar{p}

Das so erzeugte Antiproton wird durch Massenspektrometer von den Protonen und den anderen erzeugten Teilchen-Antiteilchen-Paaren getrennt, sodass man nur noch Antiprotonen im Strahlrohr hat. Aufgrund der Viererimpulserhaltung beträgt die minimale kinetische Energie

 E_\mathrm{kin}=6 \, m_p \, c^2 \, \approx \, 5{,}63 \, \mathrm{GeV} .

Dies entspricht einem Impuls von 6,5 GeV/c. Da die Protonen im Kern des Targetmaterials gebunden sind, ist die tatsächliche Energie etwas niedriger und hängt von dem verwendeten Material ab. Üblich sind hier Kupfer, Iridium und Beryllium.

Da die Antiprotonenbildung mit Protonenimpulsen höher als 6,5 GeV/c wesentlich wahrscheinlicher wird (siehe Wirkungsquerschnittsgraph), verwendet man Protonen mit einem Impuls von 26 GeV/c, dies entspricht einer kinetischen Energie von etwa 25 GeV. Um diese recht hohe Energie bereitstellen zu können, wird ein Teilchenbeschleuniger benötigt. Im Falle des AD ist dies das Proton Synchrotron, welches auch als Vorbeschleuniger für den LHC verwendet wird.

Aufbau des AD

Der Antiprotonenherstellungs- und Speicherkomplex im Überblick. Die rote Strahlröhre im linken Bildbereich dient dem Protoneneinschuss zu Kalibrationzwecken.
Der Antiproton Decelerator in detaillierter Darstellung.

Der AD ist ein Speicherring mit einem Umfang von 188 m[6]. Er besteht im Wesentlichen aus den Teilen des Antiproton Collector, einem Speicherring, welcher zuvor zum Sammeln von Antiprotonen eingesetzt und auch am PS210-Experiment verwendet wurde. Allerdings wurden sehr viele Teile stark modifiziert. So wurden alle Leistungswandler besser stromstabilisiert und das Vakuum im Vergleich zum Vorgänger um den Faktor 20 (bei AD einige 10−10 mbar) verbessert. Zum Abbremsen der Antiprotonen verwendet man Beschleunigungs-Kavitäten, die allerdings „verkehrt herum“ betrieben werden, sodass die Teilchen nach dem Durchlaufen der Kavität langsamer sind. Um die Emittanz des Teilchenstrahls verringern zu können, besitzt der AD die Fähigkeit, die beiden Standardkühlmethoden stochastische Kühlung und Elektronenkühlung anzuwenden. Die Antiprotonen werden nach der Abbremsprozedur mit einem Kicker an die Experimente weitergeleitet. Ein Kicker ist ein Elektromagnet, der schnell eingeschaltet werden kann und so die Bahn der Teilchen verändert. Durch geschicktes Ansteuern kann damit eine Art Weiche für geladene Teilchen realisiert werden.

Der AD kann zu Kalibrationszwecken mit Protonen befüllt werden[5]. Da Protonen die entgegengesetzte Ladung von Antiprotonen aufweisen, werden sie von den Ablenkmagneten in die entgegengesetzte Richtung abgelenkt. Damit sie aber dennoch gespeichert werden können, kann man sie mit Hilfe eines zweiten Strahlrohrs (im Bild die rote Schleife) in entgegengesetzter Richtung einschießen.

Um die Fläche der Halle optimal auszunutzen, baut man die Experimente im Innern des AD-Rings auf[7].

Kalibration des AD

Um den AD zu kalibrieren und die Bestandteile zu synchronisieren nimmt man ihn mit Protonen in Betrieb. Der einzige Vorteil, den Protonen gegenüber Antiprotonen bieten ist die Tatsache, dass sie in wesentlich größerer Menge vorliegen, da man sie direkt vom Proton Synchrotron in den AD einschießen kann und nicht in einem Zwischenschritt über die Paarerzeugung herstellen muss. So stehen typischerweise 3 × 1010 Protonen zur Verfügung, während es im Operationsbetrieb nur 5 × 107 sind. Auf diese Weise werden die Signale der Messgeräte stärker und man erhält ein besseres Signal-Rausch-Verhältnis.

Betrieb des AD

Die einzelnen Abbrems- und Kühlvorgänge in chronologischer Abfolge.

Ein Abbremszyklus beginnt damit, dass die Antiprotonen vom Target mit einem Impuls von 3,5 GeV/c in den AD eingeschossen werden. Da die Emittanz noch sehr hoch ist, wird sie mit Hilfe der stochastischen Kühlmethode verringert (siehe Kühlgraph). Nachdem die Emittanz ausreichend reduziert wurde, beginnt man mit dem eigentlichen Abbremsvorgang. In wenigen Sekunden werden die Antiprotonen mit Hilfe der Kavitäten auf einen Impuls von 2 GeV/c gebracht. Dabei wird aber gleichzeitig die Emittanz wieder erhöht, deshalb muss man erneut die stochastische Kühlung anwenden. Man beachte, dass Kühlmaßnahmen nur zur Verringerung der Emittanz dienen und nicht dafür verantwortlich sind, dass das Teilchenpaket insgesamt langsamer wird. Würde man die Antiprotonen direkt auf den gewünschten Impuls von 100 MeV/c bringen, so würde man aufgrund der steigenden Emittanz zu viele Antiprotonen im Strahlrohr verlieren. Nach der zweiten Kühlung kann man sie erneut abbremsen und die Emittanz mittels Elektronenkühlung reduzieren. Dies wiederholt man ein weiteres Mal, um den gewünschten Impuls von 100 MeV/c zu erreichen. Nach diesem Abbremsvorgang stehen etwa 2 × 107 langsame Antiprotonen zur Verfügung. Vergleicht man dies mit den 1013 Protonen, die auf das Target auftreffen, so benötigt man im Schnitt 500.000 Protonen, um ein langsames Antiproton zu erzeugen. Mit Hilfe eines Kickers werden die gekühlten Antiprotonen zu den Experimenten gelenkt. Nachdem die langsamen Antiprotonen an die Experimente weitergeleitet wurden, kann man den AD erneut mit schnellen Antiprotonen befüllen, und der ganze Prozess beginnt erneut.

Experimente am AD

Nach der Fertigstellung des AD wurden verschiedene Antimaterie-Experimente aufgebaut. Im Folgenden ist eine Auswahl davon beschrieben.

ATHENA (AD-1)

Da beim PS210-Experiment nur 9 sehr heiße Antiwasserstoffatome hergestellt werden konnten, wollte die ATHENA-Kollaboration[8] zeigen, dass es möglich ist, größere Mengen kalten Antiwasserstoff herzustellen. Um dies zu erreichen, wurde eine Apparatur[9] hergestellt, die man in drei Sektionen unterteilen kann. Als erstes die Antiprotonenfalle, in der die Antiprotonen vom AD gefangen und weiter herunter gekühlt werden. Als zweites den Positronen-Erzeugungs-, Sammel- und Kühlbereich und schließlich den Mischbereich, in dem die beiden Bestandteil des Antiwasserstoffs zusammgebracht werden und rekombinieren können.

Antiprotonenfalle

Vorgehensweise bei der Antiprotonenakkumulation

Die Antiprotonen aus dem AD-Ring besitzen einen Impuls von 100 MeV/c, was einer Temperatur von 6,2 × 1010 °C entspricht. Es ist daher erforderlich, sie noch weiter abzukühlen. Gemäß der Bethe-Formel verlieren geladene Teilchen kinetische Energie, wenn sie einen Festkörper durchdringen, deshalb stellt man dem Antiprotonenpaket eine 130 µm dicke Folie aus Aluminium in den Weg. Da in den Kernen der Aluminiumatome Protonen vorhanden sind, könnte man meinen, dass die Antiprotonen beim Kontakt sofort annihilieren, allerdings ist die Annihilationsrate stark von der Wechselwirkungszeit abhängig, welche sehr klein ist. Deshalb geht nur ein sehr kleiner Prozentsatz der Antiprotonen durch Annihilation verloren. Danach gelangen die immer noch energiereichen Antiprotonen in die vorbereitete Sammelfalle. Die Sammelfalle ist eine zylindrische Penning-Falle. Im Gegensatz zur klassischen Penning-Falle wird das elektrische Quadrupolfeld nicht durch hyperboloide Elektroden, sondern durch segmentierte Zylinderelektroden erreicht, bei der jeder Ring ein anderes Potential aufweist. Dadurch ist es möglich, einen Potentialtopf zu formen, in dem geladene Teilchen gefangen werden können (siehe Bild rechts). Da die Antiprotonen erst in den Potentialtopf gelangen müssen, ist dieser in den ersten 200 ns nach dem Auftreffen des Antiprotonenpaketes auf die Alufolie auf einer Seite geöffnet, während an der anderen Seite eine Spannung von 5 kV anliegt. Antiprotonen, die nach dem Durchqueren der Alufolie weniger als 5 keV kinetische Energie besitzen, können den Potentialberg nicht überwinden und werden reflektiert. Dies sind allerdings nur < 0,1 % aller Antiprotonen, sodass von den ursprünglich 2 × 107 nur noch etwa 10.000 übrig bleiben. Damit die reflektierten Antiprotonen auch in der Falle bleiben, muss nach etwa 500 ns auch an der anderen Seite der Falle eine Spannung von 5 kV anliegen. Die Antiprotonen pendeln nun also zwischen den beiden Potentialwänden der Falle hin und her. Um die 5-keV-Antiprotonen auf wenige meV abzubremsen, hat man vor dem Eintreffen des Bunchs kalte (etwa 15 K bzw. 1,3 meV) Elektronen in die Falle vorgeladen. Da Elektronen wie auch Antiprotonen negativ geladen sind, ist es kein Problem, sie in der gleichen Falle zu fangen. Fliegen nun die Antiprotonen durch die kalten Elektronen, so geben diese ihre Temperatur an die kälteren Elektronen ab und verlieren so an Energie. Die aufgeheizten Elektronen geben ihrerseits ihre Energie durch Synchrotronstrahlung im Magnetfeld der Falle ab. Antiprotonen, die ca. 1800-mal schwerer als Positronen sind, senden zwar auch Synchrotronstrahlung aus, allerdings hängt die Strahlungsleistung sehr stark von der Masse der Teilchen ab und steigt rapide mit fallender Masse an. Nach wenigen Sekunden haben die Antiprotonen ihre thermische Energie komplett an die Elektronen abgegeben, welche ihrerseits wiederum die Temperatur durch Synchrotronstrahlung verringert haben. Schließlich stehen die gefangenen Teilchen bei etwa 15 K mit den sie umgebenden gekühlten supraleitenden Magneten im thermischen Gleichgewicht und sind nun bereit, in die Mischfalle transferiert zu werden.

Positronenerzeugung und Akkumulierung

Um die Positronen für den Antiwasserstoff herzustellen, könnte man genau so verfahren, wie bei der Produktion der Antiprotonen, allerdings stellt die Natur hier einen einfacheren Weg bereit. Das radioaktive Isotop ²²Na zerfällt mit einer Wahrscheinlichkeit von 90 % durch β+-Zerfall in ²²Ne, ein Positron, ein Elektronneutrino und ein hoch energetisches Photon.

 ^{22}Na \ \longrightarrow\ ^{22}Ne + e^+ + \nu_e + \gamma \ (1{,}27 \, \mathrm{MeV})

Das so entstandene schnelle Positron wird nun ebenfalls in einer zylindrischen Penning-Falle gefangen und heruntergekühlt. Zum einen befindet sich in der Falle Stickstoffgas bei einem sehr geringen Druck. Bewegen sich die Positronen durch das Gas, so regen sie dieses an. Dies geschieht inelastisch, sodass die Positronen an kinetischer Energie verlieren und abgebremst werden. Auch hier kommt wieder Antimaterie (Positronen) mit normaler Materie (Hüllenelektronen des Stickstoffs) in Kontakt und beginnt zu annihilieren. Allerdings ist der Druck des Stickstoffgases sehr gering und der Positronenfluss mit 5 × 106 Positronen/s so hoch, dass Verluste nicht ins Gewicht fallen. Die andere verwendete Methode ist die rotating wall technique, bei der ein drehendes elektrisches Feld dem Fallenpotential überlagert wird, was im Magnetfeld der Spule zu einer Komprimierung der Positronenwolke führt. Die Zeit, die der AD benötigt, um die Antiprotonen abzubremsen, wird genutzt, um die Positronen in der Penning-Falle zu akkumulieren. So befinden sich zum Schluss über 3 × 108 Positronen in der Falle.

Die Mischfalle

Vorgehensweise beim Mischen von Antiprotonen und Positronen

Nun hat man die beiden Bestandteile eines Antiwasserstoffatoms erzeugt und muss sie in den gleichen Raumbereich bringen, damit sie rekombinieren können. Dazu dient, wie auch schon bei den beiden anderen Fallen, eine zylindrische Penning-Falle, die aus vielen einzelnen Ringelektroden besteht, um das komplexe Potential realisieren zu können. Als erstes werden die Positronen in die Mischfalle transportiert. Dies geschieht, indem man das Potential auf der einen Seite der Positronfalle auf null setzt; die Positronen strömen aufgrund ihrer kleinen Eigengeschwindigkeit aus der Positronenfalle heraus, wie Gas aus einer Gasflasche. Das Potential der Mischfalle ist zu diesem Zeitpunkt dem der Antiprotonenfalle bei t = 200 ns ähnlich. Sobald die Positronen in die leere Mischfalle geströmt sind, wird das Potential auf der anderen Seite der Mischfalle hochgefahren, und die Positronen sind in der Mischfalle gefangen. Bei diesem Vorgang verliert man etwa 50 % der Positronen. Danach wird die Positronenwolke axial komprimiert, damit sie nicht das ganze Mischfallenvolumen ausfüllen. Nun möchte man die Antiprotonen hinzufügen, allerdings stößt man auf das Problem, dass die beiden Teilchen unterschiedlich geladen sind (Antiproton negativ, Positron positiv) was bedeutet, dass sie nicht zusammen in einer normalen Penning-Falle gespeichert werden können. Anschaulich gesprochen kann man sagen, dass ein Potentialtopf für Positronen einen Potentialberg für Antiprotonen darstellt. Um dieses Problem zu lösen, legt man das Potential, dass im Bild unter 1) zu sehen ist, an die Falle an. Die Positronen wie auch die Antiprotonen sind jeweils in ihrem Potentialtopf gefangen, der entsprechend ihrer Ladung in eine andere Richtung hin „offen“ ist. Um nun die Antiprotonen in den Mischbereich zu bekommen, verändert man das Potential so, dass es den gestrichelten Verlauf in Bild 2) annimmt. Dadurch können die Antiprotonen in die Mischfalle "rutschen". Nachdem die Antiprotonen in den größeren Potentialtopf transferiert worden sind, legt man wieder das alte Potential an die Falle an (Bild 3)). Die so entstandene Falle nennt man verschachtelte Penning-Falle, da sie gewissermaßen zwei Penning-Fallen in sich vereint. Das Bild erweckt zwar den Anschein, als ob die beiden Teilchensorten voneinander getrennt wären, allerdings muss man daran denken, dass sie sich im selben Fallenvolumen aufhalten und miteinander rekombinieren können. Sie werden von dem Potential lediglich an der richtigen Position gehalten.

Wenn ein Positron und ein Antiproton zusammengefunden haben, entsteht elektrisch neutraler Antiwasserstoff. Dieser neutrale Antiwasserstoff wird von dem Fallenpotential und dem Magnetfeld nicht mehr gehalten und so kann sich das Antiatom frei im Innern der Falle bewegen, bis es auf die Ringelektroden der Penning-Falle trifft. Dort annihilieren die beiden Teilchen mit ihrem jeweiligen Materiepartner aus dem Elektrodenmaterial. Dabei wird charakteristische Vernichtungsstrahlung ausgesandt. Diese Strahlung ist mit einem Detektor nachweisbar und somit kann gezählt werden, wie viele Antiwasserstoffatome hergestellt wurden.

2002 konnte ATHENA auf diese Weise insgesamt 500.000 kalte Antiwasserstoffatome herstellen. Die kinetische Energie betrug 0,2 eV, was einer Temperatur von etwa 2000 °C entspricht. Dies ist zwar nicht "kalt" im Sinne von wenigen Millikelvin, vergleicht man die Temperatur allerdings mit den 1,4 × 1013 °C bei PS210, so ist die Ausdrucksweise gerechtfertigt. An ATHENA wurden allerdings keine Hochpräzisionsexperimente durchgeführt, es wurde nur die Herstellung von größeren Mengen kalten Antiwasserstoffs demonstriert. Inzwischen wurde das Projekt zu Gunsten der Nachfolgeexperimente AEGIS und ACE eingestellt.

ATRAP (AD-2)

ATRAP[10] ist zur gleichen Zeit wie ATHENA am AD entstanden. Auch bei ATRAP war das Ziel die Herstellung von kaltem Wasserstoff[11]. Die beiden Experimente sind sich sehr ähnlich, bis auf die Art und Weise der Positronenakkumulation die für ATRAP nachfolgend beschrieben wird.

Positronenerzeugung und Akkumulierung

Der Positronenproduktions- und Speicherbereich.

Es gibt derzeit zwei effektive Möglichkeiten, die schnellen Positronen durch inelastische Vorgänge abzubremsen. Die ATRAP-Kollaboration wählte dabei einen anderen Weg als ATHENA. Die (wie auch bei ATHENA) von ²²Na emittierten schnellen Positronen wurden zuerst von einer 10 µm dicken Titanfolie abgebremst und trafen dann auf einen 2 µm dicken Wolframkristall. Innerhalb des Kristalls besteht dann die Möglichkeit, dass sich ein positiv geladenes Positron und ein negativ geladenes Elektron zu einem Positroniumatom zusammenfügt. Bei diesem Vorgang verlieren die Positronen einen Großteil ihrer Energie, sodass es hier nicht mehr wie bei ATHENA nötig ist sie mit Stickstoffgas weiter abzubremsen. Gelangt das Positroniumatom nun zur Penning-Falle am Ende der Apparatur, so wird es dort ionisiert und das Positron in der Falle gefangen.

Da die Positronenakkumulation auf diese Weise nicht besonders effizient war, ist inzwischen auch das ATRAP-Experiment auf die bei ATHENA verwendete Methode umgestiegen.

Aktuelle Entwicklung

Im Gegensatz zu ATHENA wurde ATRAP noch nicht eingestellt und konnte kontinuierlich verbessert und erweitert werden. So verfügt ATRAP inzwischen über eine Penning-Ioffe-Falle,[12] die mit Hilfe von magnetischen Quadrupolfeldern den elektrisch neutralen Antiwasserstoff speichern kann. Dies ist möglich, da das magnetische Moment von Antiwasserstoff von Null verschieden ist.

ASACUSA (AD-3)

Künstlerische Darstellung von antiprotonischem Helium.

Beim ASACUSA[13] Experiment hat man sich darauf spezialisiert, exotische Atome in Form von antiprotonischem Helium[14] herzustellen, also einem Heliumatom, bei dem ein Hüllenelektron durch ein Antiproton ersetzt wurde. Untersucht man diese Atome mit spektroskopischen Verfahren, so kann man verschiedene Aspekte des CPT-Theorems testen. Dieses sagt unter anderem voraus, dass die Massen von Proton und Antiproton identisch sind. Die Formel

\frac{1}{\lambda} = Z^2 \frac{R_{\infty}}{1+ \frac{m_{\bar{p}}}{M}} \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right)

verknüpft die zu messende Wellenlänge λ des emittierten Lichts mit der Kernladungszahl Z, der Rydberg-Konstante R, den an dem Übergang beteiligten Hauptquantenzahlen n1 und n2, der Kernmasse M und der Masse des Antiprotons m_{\bar{p}}. Diese Formel ist zwar nur eine erste Näherung welche relativistische- und QED-Effekte wie z. B. den Lamb-Shift vernachlässigt, illustriert die Idee hinter der Messung allerdings recht gut.

Bis auf die Wellenlänge λ und der Antiprotonenmasse m_{\bar{p}} sind alle Observablen bekannt. Man kann also durch hochgenaues Messen der Wellenlänge die Antiprotonenmasse sehr präzise bestimmen und mit der Masse des Protons vergleichen. Weichen die Werte innerhalb des Messfehlers voneinander ab, so ist das CPT-Theorem widerlegt.

ASACUSA hat mehrere Strahlungsübergänge hochgenau vermessen, konnte aber keine Abweichungen der Massen nachweisen. Das CPT-Theorem hat also weiterhin Bestand[15].

ACE (AD-4)

Die möglichen Vorteile der Nutzung von Antiprotonen in der Strahlentherapie maligner Tumoren wird von der ACE-Kollaboration[16] erforscht. Aufgrund der freiwerdenen Annihilationsenergie ist die Dosis im Vergleich zu Protonen im Bragg-Peak bei gleicher Dosis im Eingangskanal etwa verdoppelt. Dadurch könnte das gesunde Gewebe in der Umgebung des Tumors geschont werden. Außerdem verspricht man sich durch Detektion hochenergetischer Pionen Möglichkeiten für Online-Dosisverifikation.

AEGIS (AD-6)

Wie schon weiter oben erwähnt, gibt es verschiedene quantentheoretische Beschreibungen der Gravitation, die nicht ausschließen, dass Antimaterie im Gravitationsfeld der Erde eine andere Fallbeschleunigung als normale Materie erfahren könnte. Um dies zu überprüfen wurde die AEGIS-Kollaboration[17] gegründet. Momentan befindet sich das Experiment noch in der Planungs- und Vorbereitungsphase, der prinzipielle Aufbau steht allerdings schon fest.

Als Probekörper hat man sich für Antiwasserstoff entschieden. Der Grund hierfür liegt in der elektrischen Neutralität und relativ einfachen Herstellung von Antiwasserstoff. Andere Experimente, die als Probekörper geladenen Antiteilchen verwendeten (z. B. Antiprotonen) scheiterten an den auf sie wirkenden elektrischen und magnetischen Kräften aufgrund von schwachen Feldern die allgegenwärtig sind bzw. durch Fallen generiert werden. Dies ist verständlich, wenn man die elektrische Coulombkraft FC mit der gravitativen Kraft FG von zwei Elektronen miteinander vergleicht.

\frac{F_\mathrm{C}}{F_\mathrm{G}} \approx 4{,}2 \times 10^{42}

Die Gravitation ist in diesem Fall also 4,2 × 1042 mal schwächer als die elektrische Kraft.

Messprinzip von AEGIS

Das komplette Messverfahren von AEGIS im Überblick.

Als erstes schießt man Positronen mit kinetischen Energien von 100 eV bis einige keV auf ein Target, das aus einem nanoporösen, nichtleitenden Festkörper besteht. Nanoporös bedeutet hier, dass die Porengröße im Bereich von 0,3 bis 30 nm liegt. Das einfallende Positron wird im Material sehr schnell abgebremst und kann unter bestimmten Umständen einen Bindungszustand mit einem Hüllenelektron aus dem Isolator eingehen; auf diese Weise entsteht Positronium. Da die Dielektrizitätszahl in den Poren kleiner ist als im Festkörper und damit die Bindungsenergie des Positronium erhöht, sammelt sich dieses bevorzugt in diesen Freiräumen. Dort prallt das Positronium immer wieder gegen die Wand und verliert so immer mehr kinetische Energie, bis diese schließlich so groß ist wie die thermische Energie des Targetmaterials. Durch Abkühlen des Isolators kann also sehr kaltes und damit auch sehr langsames Positronium akkumuliert werden. Hat sich das Positronium thermalisiert kann es aus dem Isolator heraus diffundieren. Bei diesem gesamten Vorgang geht ein großer Anteil der Positronen durch Annihilation verloren. Jedoch kann durch entsprechende Dimensionierung des Positronenflusses für eine ausreichend große Anzahl an thermischem Positronium gesorgt werden. Bringt man nun das Positronium mit den zuvor in einer Penning-Falle akkumulierten und gekühlten Antiprotonen zusammen, so bildet sich Antiwasserstoff. Diese Reaktion besitzt allerdings eine sehr geringe Wahrscheinlichkeit, da in Positronium im Grundzustand das Positron sehr stark an das Elektron gebunden ist. Um die Bindungsenergie zu reduzieren kann man das Positronium mit Hilfe von Lasern zu hohen Hauptquantenzahlen im Bereich von n = 30…40 anregen. Bildlich gesprochen entfernen sich die beiden Teilchen dadurch voneinander und spüren die gegenseitige Anziehung weniger. Im Fall von hoch angeregten Zuständen (man spricht auch von Rydberg-Zuständen) steigt die Wahrscheinlichkeit für die Antiwasserstoffbildung ungefähr mit der vierten Potenz der Hauptquantenzahl n. Die Bildungsgleichung sieht also wie folgt aus:

Ps^* + \bar{p} \longrightarrow \bar{H}^* + e^-

der Stern bedeutet, dass sich das Atom in einem Rydberg-Zustand befindet.

Antiwasserstoff ist elektrisch neutral und kann die Falle in jede Richtung verlassen, unter anderem in die Richtung der Stark-Beschleunigungselekroden (siehe Bild). Da für die Messung einen Antiwasserstoffstrahl benötigt wird, muss man den langsamen Antiwasserstoff gezielt in eine Richtung beschleunigen, dies ist allerdings aufgrund der elektrischen Neutralität nicht mit einem homogenen elektrischen Feld zu erreichen. Antiwasserstoff weist allerdings ein elektrisches Dipolmoment auf und kann dadurch in einem elektrischen Gradientenfeld beschleunigt werden. Dieser Sachverhalt ist mit der Alltagserfahrung vergleichbar, dass ein Wasserstrahl (der ja elektrisch neutral ist) mit einem geladenen Kamm abgelenkt werden kann. Das Wasser wird also im inhomogenen elektrischen Feld des Kamms zum Kamm hin beschleunigt. Da diese Technik beim Antiwasserstoff mit dem Stark-Effekt verwandt ist wird sie auch Stark-Beschleunigung genannt. Die Geschwindigkeit v, die dabei erreicht werden soll wird ca. 400 m/s betragen. Um die Fallbeschleunigung g zu messen, lässt man den Strahl eine gewisse Strecke L fliegen. In der Zeit T = L/v „fallen“ die Antiwasserstoffatome im Gravitationsfeld der Erde. Die Antiatome führen also einen waagerechten Wurf aus. Während des Fallens wird der Strahl um die Strecke δx von der horizontalen abgelenkt. Da die Geschwindigkeit v sehr klein ist, kann man klassische newtonsche Mechanik anwenden und erhält

\delta x = \frac{1}{2} \, g \, T^2 = \frac{g \, L^2}{2 \, v^2}
\Rightarrow \ g = \frac{2 \, v^2 \, \delta x}{L^2}

Durch messen der Verschiebung δx kann man also die Fallbeschleunigung g für Antimaterie bestimmen. Dies geschieht beim AEGIS-Experiment mit einem ortsauflösenden Moiré-Detektor. Als erstes Ziel für die Messgenauigkeit wurde eine Messabweichung von 1 % anvisiert.

Verwandte Projekte

Mit dem Fermilab Antiproton Accumulator verfügen auch die USA über einen Antiprotonen-Speicherring. An ihm wurde 1997 mit dem E862 Experiment[18] auf eine ähnliche Art und Weise wie beim PS210-Experiment 66 Antiwasserstoffatome hergestellt.

Mit dem FAIR Beschleunigerzentrum wird ab ca. 2020 auch in Deutschland eine ähnliche Anlage zur Verfügung stehen. Dazu wird die bestehende Beschleunigeranlage am GSI stark erweitert. Diese Anlage wird zwar in Deutschland stehen, ist allerdings ähnlich dem CERN als internationales Projekt angelegt.

Siehe auch

Literatur

  • Wolfgang Demtröder: Laserspektroskopie, Grundlagen und Techniken. Springer, 2007, ISBN 978-3-540-33792-8
  • Ingolf V. Hertel, Claus-Peter Schulz: Atome, Moleküle und optische Physik 1. Springer, 2008, ISBN 978-3-540-30613-9
  • Frank Hinterberger: Physik der Teilchenbeschleuniger und Ionenoptik. Springer, 2008, ISBN 978-3-540-75281-3
  • Seminarvortrag über Antimaterie: Antimatter (englisch, pdf)

Weblinks

Einzelnachweise

  1. CERN: The Antimatter Factory - What is the AD? (English). Abgerufen am 27. Nov. 2009.
  2. Webseite des PS210 Experiments: http://ikpe1101.ikp.kfa-juelich.de/ps210/home_german.html
  3. Der erste experimentelle Nachweis von (heißem) Antiwasserstoff: G. Baur et al. "Production of Antihydrogen", Phys. Lett. B 368 (1996) p. 251
  4. Mögliche Abweichung von der "normalen" Gravitationskraft: Goldman et al. "Experimental Evidence for Quantum Gravity?" Phys. Let. B 171 (1986) p. 217
  5. a b Übersicht über den AD: S. Maury "THE ANTIPROTON DECELERATOR (AD)" (pdf)
  6. Übersichtsartikel rund um das Thema Antiprotonen: http://cool-antihydrogen.web.cern.ch/cool-antihydrogen/Story/Story-en.html
  7. Experimentierbereich im Innern des AD: M. Giovannozzi et al. "Experimental Area of the CERN Antiproton Decelerator" (pdf)
  8. Webseite des ATHENA-Experiments: http://athena.web.cern.ch/athena/
  9. Übersichtsartikel über ATHENA: Amoretti et al. "The ATHENA antihydrogen apparatus" NIM A 518 (2004) 679
  10. Webseite des ATRAP Experiments: http://hussle.harvard.edu/~atrap/
  11. G. Gabrielse et al. "Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States", Phys. Rev. Lett. 89 (2002) p. 213401
  12. G. Gabrielse et al. Antihydrogen Production within a Penning-Ioffe Trap, Phys. Rev. Lett. 100 (2008) p. 113001
  13. Webseite des ASACUSA-Experiments: http://asacusa.web.cern.ch/ASACUSA/
  14. Übersichtsartikel über das ASACUSA Experiment: T. Azuma et al. ATOMIC SPECTROSCOPY AND COLLISIONS USING SLOWANTIPROTONS (pdf)
  15. M. Hori et al. Sub-ppm laser spectroscopy of antiprotonic helium and a CPT-violation limit on the antiprotonic charge and mass, Phys. Rev. Lett. 87 (2001) 093401 (pdf)
  16. Homepage der ACE-Kollaboration, ad4 homepage
  17. A. Kellerbauer et al. Proposed antimatter gravity measurement with an antihydrogen beam NIM B 266 (2008) 351 (pdf)
  18. Webseite des E862-Experiments: http://ppd.fnal.gov/experiments/hbar/
46.2339586.046386

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Antiproton Decelerator — …   Википедия

  • Antiproton Decelerator — The Antiproton Decelerator (AD) is a particle accelerator at the CERN laboratory in Geneva. The decelerated antiprotons are ejected to one of the connected experiments.ExperimentsFormer ExperimentsExternal links*… …   Wikipedia

  • Antiproton — (p ) Klassifikation Fermion Hadron Baryon Nukleon Eigenschaften Ladung −1 e 1,602176462 · 10 19 C …   Deutsch Wikipedia

  • Antimatter — For other uses, see Antimatter (disambiguation). Antimatter …   Wikipedia

  • CERN — For the company with the ticker symbol CERN, see Cerner. For the rocket nozzle, see SERN. Coordinates: 46°14′03″N 6°03′10″E / 46.23417°N 6.05278°E …   Wikipedia

  • Antiwasserstoff — ist das Antimaterie Gegenstück zum Wasserstoff. Der Atomkern besteht aus einem Antiproton, die Atomhülle aus einem Positron. Inhaltsverzeichnis 1 Geschichte der Antiwasserstoffherstellung 2 Siehe auch 3 Literatur …   Deutsch Wikipedia

  • CERN — Organisation européenne pour la recherche nucléaire Organisation européenne pour la recherche nucléaire Création 29 septembre 1954 Siège …   Wikipédia en Français

  • Centre Européen De Recherches Nucléaires — Organisation européenne pour la recherche nucléaire Organisation européenne pour la recherche nucléaire Création 29 septembre 1954 Siège …   Wikipédia en Français

  • Centre Européen pour la Recherche Nucléaire — Organisation européenne pour la recherche nucléaire Organisation européenne pour la recherche nucléaire Création 29 septembre 1954 Siège …   Wikipédia en Français

  • Centre européen de recherches nucléaires — Organisation européenne pour la recherche nucléaire Organisation européenne pour la recherche nucléaire Création 29 septembre 1954 Siège …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”