Abelsche Erweiterung

Im mathematischen Teilgebiet der Algebra ist eine abelsche Erweiterung eine galoissche Körpererweiterung mit abelscher Galoisgruppe. Im Spezialfall einer zyklischen Galoisgruppe liegt eine zyklische Erweiterung vor.

Die Klassenkörpertheorie beschreibt die abelschen Erweiterungen von Zahlkörpern, Funktionenkörpern von algebraischen Kurven über endlichen Körpern und lokalen Körpern.

Erweiterungen, die durch Adjunktion von Einheitswurzeln hervorgehen, sind abelsch, also beispielsweise alle algebraischen Erweiterungen endlicher Körper. Wenn ein Körper K bereits eine primitive n-te Einheitswurzel enthält und die Charakteristik p von K kein Teiler von n ist, so ist auch jede Erweiterung durch Adjunktion einer n-ten Wurzel eines Elementes von K abelsch, genannt Kummer-Erweiterung. Adjungiert man alle n-ten Wurzeln eines Elements, so ist die Erweiterung im allgemeinen nicht mehr abelsch, sondern ein semidirektes Produkt, da die Galoisgruppe auf den Wurzeln und den n-ten Einheitswurzeln operiert. Die Kummer-Theorie beschreibt die abelschen Erweiterungen eines Körpers, und der Satz von Kronecker-Weber besagt, dass für K = \mathbb{Q} die abelschen Erweiterungen genau die sind, die in den Kreisteilungskörpern enthalten sind.


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Zyklische Erweiterung — Im mathematischen Teilgebiet der Algebra ist eine abelsche Erweiterung eine galoissche Körpererweiterung mit abelscher Galoisgruppe. Im Spezialfall einer zyklischen Galoisgruppe liegt eine zyklische Erweiterung vor. Die Klassenkörpertheorie… …   Deutsch Wikipedia

  • Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Fehlstand — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Integrabel — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Kollinear — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Kopunktal — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Mathematisches Attribut — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Multivariat — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”