Abgestumpftes Tetraeder
Friauf-Polyeder
Faltvorlage

Das Friauf-Polyeder (abgestumpftes Tetraeder, Tetraederstumpf) ist ein Polyeder (Vielflächner), das durch Abstumpfung der Ecken eines Tetraeders entsteht und zu den archimedischen Körpern zählt. Anstatt der vier Ecken des Tetraeders befinden sich nun dort vier gleichseitige Dreiecke, die dreieckigen Flächen des Tetraeders werden zu regelmäßigen Sechsecken. Der Name geht zurück auf den Chemiker James B. Friauf, der dieses Polyeder zum ersten Mal als Grundlage des Aufbaus von MgZn2 beschrieb.[1] [2]

Das Friauf-Polyeder ist ein typisches Koordinationspolyeder mit der Koordinationszahl 12 in intermetallischen Verbindungen wie den Laves-Phasen. In MgNi2 beispielsweise wird das Magnesium von 12 Nickelatomen in Form eines Friauf-Polyeders umgeben. Die nächsten vier benachbarten Magnesiumatome umgeben das zentrale Magnesiumatom des Friauf-Polyeders in Form eines Tetraeders und befinden sich genau über den Sechsecken, sie werden auch als Kappen bezeichnet. Für dieses vierfach überkappte Friauf-Polyeder ergibt sich somit eine Koordinationszahl von 12 + 4 = 16.

Inhaltsverzeichnis

Formeln

Größen eines Tetraederstumpfs mit Kantenlänge a
Volumen V \, = \, \frac{23}{12}a^3 \sqrt{2}
Oberflächeninhalt O \, = \, 7a^2\sqrt{3}
Umkugelradius R \, = \, \frac{a}{4} \sqrt{22}
Kantenkugelradius r \, = \, \frac{3}{4}a \sqrt{2}
Flächen-Flächen-Winkel
≈ 70,53° (Hexagon–Hexagon)
 \cos \, \alpha_1 = \frac{1}{3}
Flächen-Flächen-Winkel
≈ 109,47° (Hexagon–Trigon)
 \cos \, \alpha_2 = -\frac{1}{3}

Kartesische Koordinaten

Die kartesischen Koordinaten der Eckpunkte können lauten, bei Mittelpunkt im Ursprung:

(±3, ±1, ±1),
(±1, ±3, ±1),
(±1, ±1, ±3),

wobei von diesen 24 Koordinaten jene 12 auszuwählen sind, die eine ungerade Zahl an Pluszeichen (1 oder 3) und damit eine gerade an Minuszeichen (2 oder 0) haben, oder umgekehrt.

Einzelnachweise

  1. http://laves.mpie.de/laves_phases.html
  2. http://etd.caltech.edu/etd/available/etd-11112004-102634/

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Tetraëder — Ein Tetraeder [tetraˈeːdər] (v. griech.: tetráedron = Vierflächner), auch Vierflächner oder Vierflach, ist ein Körper mit vier dreieckigen Seitenflächen. Animierte Grafik eines sich langsam drehenden Tetraeders Das Wort wird jedoch nur selten in… …   Deutsch Wikipedia

  • Abgestumpftes Dodekaeder — Der Dodekaederstumpf ist ein Polyeder (Vielflächner), der durch Abstumpfung der Ecken eines Pentagon Dodekaeders entsteht und zu den archimedischen Körpern zählt. Anstatt der 20 Ecken des Dodekaeders befinden sich nun dort ebenso viele… …   Deutsch Wikipedia

  • Abgestumpftes Hexaeder — Parkettierung des Raums mit abgestumpften Hexaedern und Oktaedern Der Hexaederstumpf ist ein Polyeder (Vielflächne …   Deutsch Wikipedia

  • Abgestumpftes Ikosaeder — Fußball: Projizierung der Flächen eines Ikosaederstumpfes auf die Kugeloberfläche Der Ikosaederstumpf (auch Fußballkörper genannt …   Deutsch Wikipedia

  • Abgestumpftes Oktaeder — Parkettierung des Raums mittels abgestumpfter Oktaeder Der Oktaederstumpf ist ein Polyeder (Vielflächner), der durch Abstumpfung der Ecke …   Deutsch Wikipedia

  • Abgestumpftes Ikosidodekaeder — Großes Rhombenikosidodekaeder Das große Rhombenikosidodekaeder (auch Ikosidodekaederstumpf genannt) ist ein Polyeder, das zu den archimedischen Körpern zählt. Es setzt sich aus 30 Quadraten, 20 regelmäßigen Sechsecken sowie 12 regelmäßigen… …   Deutsch Wikipedia

  • Abgestumpftes Kuboktaeder — Großes Rhombenkuboktaeder Das große Rhombenkuboktaeder (auch Kuboktaederstumpf genannt) ist ein Polyeder (Vielflächner), das zu den archimedischen Körpern zählt. Es setzt sich aus 12 Quadraten, 8 Sechsecken und 6 Achtecken zusammen. Dabei bilden… …   Deutsch Wikipedia

  • Regelmäßiges Tetraeder — Ein Tetraeder [tetraˈeːdər] (v. griech.: tetráedron = Vierflächner), auch Vierflächner oder Vierflach, ist ein Körper mit vier dreieckigen Seitenflächen. Animierte Grafik eines sich langsam drehenden Tetraeders Das Wort wird jedoch nur selten in… …   Deutsch Wikipedia

  • Platonische Körper — Die platonischen Körper (oder regulären Polyeder) sind die nach dem griechischen Philosophen Platon benannten fünf besonders regelmäßigen konvexen Polyeder (Vielflächner), die dadurch charakterisiert sind, dass ihre Seitenflächen zueinander… …   Deutsch Wikipedia

  • Platonkörper — Die platonischen Körper (oder regulären Polyeder) sind die nach dem griechischen Philosophen Platon benannten fünf besonders regelmäßigen konvexen Polyeder (Vielflächner), die dadurch charakterisiert sind, dass ihre Seitenflächen zueinander… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”