Absolute Häufigkeit
Beispiel einer absoluten Häufigkeitsverteilung: Prognose der Altersverteilung für Deutschland im Jahr 2050

Der Begriff absolute Häufigkeit ist gleichbedeutend mit dem umgangssprachlichen Begriff Anzahl. Die absolute Häufigkeit ist ein Maß der deskriptiven Statistik und soll sich vom Begriff relative Häufigkeit abgrenzen.

Die absolute Häufigkeit ist das Ergebnis einer einfachen Zählung von Objekten oder Ereignissen (besser Elementarereignissen). Sie gibt an, wie viele Elemente mit dem gleichen interessierenden Merkmal gezählt wurden.

Als Anzahl kann sie nur eine natürliche Zahl sein und auch nicht negativ werden. Wegen ihrem festen Nullpunkt und den festen ganzzahligen Einheiten, ist sie eine Absolutskala. Das heißt, ihr Nullpunkt und die Größe der Einheiten kann nicht sinnvoll verändert werden. Im Gegensatz zur relativen Häufigkeit sind die Werte der absoluten Häufigkeit also absolut, sprich unveränderlich. Ihr Wertebereich geht von 0 bis Unendlich.

Für den Vergleich von Teilmengen unterschiedlich großer Grundmengen eignet sich hingegen die absolute Häufigkeit nicht. Die Höhe der absoluten Häufigkeit hängt vom Umfang des betrachteten Grundmenge ab, was diesen Vergleich unsinnig macht. Für einen solchen Vergleich wird deshalb ein normiertes Maß, die relative Häufigkeit verwendet.

Inhaltsverzeichnis

Regel

Wenn bei n Beobachtungen eines Zufallversuchs bzw. bei der Überprüfung einer Stichprobe das Ereignis A insgesamt Hn(A)-mal auftritt, dann heißt diese Größe die absolute Häufigkeit des Ereignisses A.

Beispiel

Bei der Betrachtung symmetrischer Daten bietet sich eine vorherige Klassierung an. Man bildet dann die absoluten Häufigkeiten der Klassen. In einer Umfrage werden 453 Personen nach ihrem Alter befragt. Bei der Auszählung stellt man fest, dass 197 Personen in die Klasse "von 20 Jahre bis unter 30 Jahre" fallen. Damit ist die absolute Häufigkeit dieser Klasse 197.

Absolute Häufigkeit in der medizinischen Statistik

Die absolute Häufigkeit kann anstelle der Wahrscheinlichkeit angegeben werden, um das Verständnis von Risiken und Testbefunden zu erleichtern und wird daher besonders in der Statistik und Wahrscheinlichkeitsrechnung verwandt. Die Angabe erfolgt in „X von Y“, also zum Beispiel „80 von 1000“. Diese Angabe ist eine Normierung der natürlichen Häufigkeit (zum Beispiel „1 von 125“).

Mittels der Darstellung in absoluten Häufigkeiten können medizinische Testergebnisse (AIDS-Test, Mammogramm) einfacher interpretiert werden. Eine alternative Berechnung bietet der Satz von Bayes.

Ein Beispiel (ohne Angaben von Wahrscheinlichkeiten)[1]:

  • 10 von 1000 symptomfreien Personen haben eine Krankheit (der so genannte Grundanteil). Bei 8 von den 10 Personen, die diese Krankheit haben, fällt ein spezieller medizinischer Test positiv aus (Sensitivität = 8/10), bei den 990 gesunden Menschen fällt der Test dennoch bei 99 positiv aus, also nur bei 891 negativ (Spezifität = 891/990). Frage: Wie viele der Untersuchten mit positivem Ergebnis sind tatsächlich erkrankt?

Ein Entscheidungsbaum ist hilfreich, um das Problem zu visualisieren!

Eine Darstellung im Entscheidungsbaum:

                    1000
                  /      \
          krank  /        \  gesund
                /          \ 
              10           990
              /\            /\
             /  \          /  \
          - /    \ +    + /    \ -
           /      \      /      \
          2       8     99      891
                   
  • „+“ - positives Testergebnis
  • „-“ - negatives Testergebnis

Ergebnis: Von den 107 (8+99) Personen mit positivem Testergebnis sind nur 8 Personen wirklich erkrankt, also weniger als jeder 10. der untersuchten Personen. Das alles ohne andere Untersuchungen.

Bemerkung: Falsch sind die Ergebnisse offensichtlich bei 101 Personen. 99 Personen sind gesund, werden aber im Testergebnis als krank betrachtet (falsch positiv) und 2 Personen sind krank, werden aber im Testergebnis als gesund betrachtet (falsch negativ).

Diese Visualisierung der Häufigkeit mit einem Entscheidungsbaum hat folgende Vorteile für das Verstehen des Satzes von Bayes:

  • Das Betrachten von Mengen und Teilmengen ("8" von "10") fällt oft leichter als das Berechnen von Wahrscheinlichkeiten in Prozent und den Gegenwahrscheinlichkeiten
  • Die Übersetzung in Wahrscheinlichkeiten entfällt und die Interpretation des Ergebnisses ist leichter
  • Einfachheit: das Kombinieren mehrerer Regeln entfällt, besonders die schwer zu verstehende Inversion (aus P(A|B) soll etwas über P(B|A) ausgesagt werden) im Satz von Bayes.
  • Sequenzargument. Die hierarchisch-sequentiellen Entscheidungen sind leicht darzustellen.

Siehe auch

Einzelnachweise

  1. Muss der Satz von Bayes schwer verständlich sein?. Abc.mpib-berlin.mpg.de. Abgerufen am 4. Juli 2010.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • absolute Häufigkeit — absolute Frequenz …   Universal-Lexikon

  • absolute Frequenz — absolute Häufigkeit …   Universal-Lexikon

  • Häufigkeit — Unter einer Häufigkeit versteht man die Anzahl von Ereignissen innerhalb eines Zeitraums. Bei periodischen Vorgängen kann diese Größe auch Frequenz genannt werden. Arten Im Alltag lauten Fragen nach der Häufigkeit: „Wie häufig/ Wie oft in ihrem… …   Deutsch Wikipedia

  • Häufigkeit — September2007 * * * Häu|fig|keit 〈f. 20; unz.〉 häufiges Vorkommen ● je nach Häufigkeit; die Häufigkeit seiner Besuche * * * Häu|fig|keit, die; , en <Pl. selten>: häufiges Vorkommen: die H. einer Pflanze, eines Phänomens. * * * Häufigkeit,   …   Universal-Lexikon

  • Bedingte Häufigkeit — Berechnung der relativen Häufigkeit als Mengendiagramm Die relative Häufigkeit oder bedingte Häufigkeit ist ein Maß der deskriptiven Statistik und in der elementaren Wahrscheinlichkeitsrechnung. Sie gibt den Anteil der Objekte mit dem gleichen… …   Deutsch Wikipedia

  • Prozentuale Häufigkeit — Berechnung der relativen Häufigkeit als Mengendiagramm Die relative Häufigkeit oder bedingte Häufigkeit ist ein Maß der deskriptiven Statistik und in der elementaren Wahrscheinlichkeitsrechnung. Sie gibt den Anteil der Objekte mit dem gleichen… …   Deutsch Wikipedia

  • Relative Häufigkeit — Berechnung der relativen Häufigkeit als Mengendiagramm Die relative Häufigkeit ist ein Maß der deskriptiven Statistik. Sie gibt den Anteil der Elemente einer Menge wieder, bei denen eine bestimmte Merkmalsausprägung vorliegt. Sie wird berechnet,… …   Deutsch Wikipedia

  • Kumulative Häufigkeit — Die kumulierte Häufigkeit oder Summenhäufigkeit ist ein Maß der deskriptiven Statistik. Sie gibt an, bei welcher Anzahl der Merkmalsträger in einer empirischen Untersuchung die Merkmalsausprägung kleiner ist als eine bestimmte Schranke. Die… …   Deutsch Wikipedia

  • Kumulierte Häufigkeit — Die kumulierte Häufigkeit oder Summenhäufigkeit ist ein Maß der deskriptiven Statistik. Sie gibt an, bei welcher Anzahl der Merkmalsträger in einer empirischen Untersuchung die Merkmalsausprägung kleiner ist als eine bestimmte Schranke. Die… …   Deutsch Wikipedia

  • Summenhäufigkeit — Die kumulierte Häufigkeit oder Summenhäufigkeit ist ein Maß der deskriptiven Statistik. Sie gibt an, bei welcher Anzahl der Merkmalsträger in einer empirischen Untersuchung die Merkmalsausprägung kleiner ist als eine bestimmte Schranke. Die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”