Absolutglied

Absolutglied

In der Mathematik ist ein Polynom (von griech. πολύ / polý und lat. nomen = „mehrnamig“) eine Summe von Vielfachen von Potenzen mit natürlichzahligen Exponenten einer Variablen, die in den meisten Fällen mit x bezeichnet wird.

In der elementaren Algebra identifiziert man diese formale Summe mit einer Funktion in x (einer Polynomfunktion), in der abstrakten Algebra unterscheidet man streng zwischen diesem Begriff und dem eines Polynoms als Element eines Polynomrings. In der Schulmathematik wird eine Polynomfunktion auch als ganzrationale Funktion bezeichnet (siehe auch rationale Funktion).

Dieser Artikel erklärt außerdem die mathematischen Begriffe: Grad eines Polynoms, Leitkoeffizient, Normieren eines Polynoms, Polynomglied, Absolutglied, Binom; sowie Nullstellenschranke, Cauchy-Regel, Newton-Regel, gerade und ungerade Potenz.

Graph einer Polynomfunktion 5. Grades

Inhaltsverzeichnis

Polynome in der elementaren Algebra

Definition

In der elementaren Algebra ist eine Polynomfunktion oder kurz Polynom eine Funktion P(x) der Form

P(x) = \sum_{i=0}^n a_ix^i = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_2x^2 + a_1x + a_0, n \ge 0,

wobei als Definitionsbereich für die Variable x jede beliebige R-Algebra in Frage kommt, wenn R der Wertebereich der Koeffizienten ist (siehe unten). Häufig ist dieser jedoch die Menge der ganzen, der reellen oder der komplexen Zahlen.

  • Die ai stammen aus einem Ring R, z. B. einem Körper oder einem Restklassenring, und werden Koeffizienten genannt. Wenn R die ganzen, die reellen bzw. die komplexen Zahlen umfasst, spricht man auch von ganzen, reellen bzw. komplexen Polynomen.
  • Alle Exponenten sind natürliche Zahlen.
  • Als Grad des Polynoms wird der höchste Exponent n bezeichnet, für den der Koeffizient an des Monoms anxn nicht null ist. Dieser Koeffizient heißt Leitkoeffizient. (Die übliche Schreibweise \deg f\,\! für den Grad des Polynoms f ist vom englischen Begriff degree abgeleitet. In der deutschsprachigen Literatur findet sich häufig auch die aus dem Deutschen kommende Schreibweise \mathrm{grad}\,f oder \mathrm{Grad}\,f.)
  • Für das Nullpolynom, bei dem alle ai Null sind, wird der Grad als -\infty definiert.
  • Ist der Leitkoeffizient 1, dann heißt das Polynom normiert.
  • Ist der Inhalt 1, dann heißt das Polynom primitiv.

Der Koeffizient a0 heißt Absolutglied. a1x wird als lineares Glied bezeichnet, a2x2 als quadratisches Glied und a3x3 als kubisches.

Einfaches Beispiel

Das Polynom

P(x) = 2x3 + x2 + 3,5x − 5

ist eine Polynomfunktion dritten Grades (höchster Exponent ist 3), der Leitkoeffizient ist 2, die anderen Koeffizienten sind 1; 3,5 und -5.

Bezeichnung spezieller Polynome

Polynome des Grades

Eigenschaften

  • Polynome sind von besonderer Bedeutung, weil sie eine einfache Funktionenfamilie bilden. Insbesondere sind sie leicht zu differenzieren und integrieren. Die Ableitung eines Polynoms
a_0 + a_1x + a_2x^2 + \ldots + a_nx^n = \sum_{i=0}^{n}a_ix^i
ist das Polynom
a_1 + 2a_2x + 3a_3x^2 + \ldots + na_nx^{n-1} = \sum_{i=1}^{n}ia_ix^{i-1}.
  • Polynome wachsen als Linearkombinationen von Potenzen (für hinreichend große Werte der Variablen x) langsamer als jede exponentielle Funktion, deren Basis größer als 1 ist, unabhängig von den Koeffizienten.
(Wenn man die x-Achse als Zeitachse interpretiert, ergibt sich anschaulich folgendes Bild für diese Polynome: Entweder kommen sie von -\infty, schwanken evtl. ein bisschen (eine oder mehrere Nullstellen) und gehen dann Richtung +\infty, oder sie kommen umgekehrt von +\infty, schwanken evtl. etwas und gehen dann Richtung -\infty.)
  • Reelle Polynome geraden Grades haben einen Wertebereich von
    •  \left[y_\mathrm{min},\,\infty\right[ bei positivem Leitkoeffizienten an
    •  \left]-\infty,\,y_\mathrm{max}\right] bei negativem an
(Wenn man die x-Achse als Zeitachse interpretiert, ergibt sich anschaulich folgendes Bild für diese Polynome: Entweder kommen sie von -\infty, schwanken ein bisschen (lokale Maxima, evtl. Nullstellen) und gehen dann wieder Richtung -\infty, oder sie kommen von +\infty, schwanken ein bisschen (lokale Minima) und gehen dann wieder Richtung +\infty.)
  • Für den Grad von Polynomen f,g gelten die Gradabschätzungen

\deg(f+g) \le \max(\deg f, \deg g)
und für reelle Polynome oder allgemein für Polynome über einem Integritätsbereich

\deg(f\cdot g) = \deg f  + \deg g.
Für allgemeinere Ringe gilt auch in der letzten Beziehung lediglich \mathord\leq.
  • Mit dem Horner-Schema kann die Auswertung f(a) eines Polynoms an einer bestimmten Stelle a effizient vorgenommen werden.

Nullstellen des Polynoms

Allgemeine Eigenschaften

Als Nullstellen oder Wurzeln eines Polynoms werden jene Werte von x bezeichnet, für die der Funktionswert P(x) null ist. Sie sind also die Lösungen der Gleichung P(x) = 0. Ein Polynom über einem Körper (oder allgemeiner einem Integritätsbereich) hat stets höchstens so viele Nullstellen, wie sein Grad angibt.

  • Der Fundamentalsatz der Algebra besagt, dass ein komplexes Polynom vom Grad n größer oder gleich 1 mindestens eine komplexe Nullstelle hat (reiner Existenssatz). Dann hat es genau n Nullstellen (Polynomdivision), wenn die Nullstellen entsprechend ihrer Vielfachheit gezählt werden, beispielsweise hat das Polynom (x − 2)2 eine doppelte Nullstelle bei x = 2. Jedes Polynom positiven Grades lässt sich daher in ein Produkt von Linearfaktoren zerlegen.
  • Jede rationale Nullstelle eines normierten Polynoms (höchster Koeffizient ist 1) mit ganzzahligen Koeffizienten ist ganzzahlig und Teiler des Absolutgliedes.
  • Die Nullstellen von Polynomen ersten, zweiten, dritten und vierten Grades lassen sich mit Formeln exakt berechnen (z. B. pq-Formel für quadratische Gleichungen), dagegen lassen sich Polynome höheren Grades nur in Spezialfällen mit Hilfe von Wurzelzeichen exakt faktorisieren.
  • Polynome ungeraden Grades mit reellen Koeffizienten haben immer mindestens eine reelle Nullstelle.

Nullstellenschranken

Die Lage aller Nullstellen eines Polynoms vom Grad n lässt sich durch Nullstellenschranken, in deren Berechnung nur die Koeffizienten und der Grad des Polynoms eingehen, abschätzen.

Reelle Nullstellenschranken

Ein wichtiger Spezialfall sind reelle Nullstellenschranken für reelle Polynome: Eine Zahl B\in\R_+ heißt reelle Nullstellenschranke des Polynoms f\in\R[X], wenn alle reellen Nullstellen von f im Intervall [ − B,B] liegen; sie heißt obere reelle Nullstellenschranke von f, wenn alle reellen Nullstellen von f kleiner oder gleich B sind. Analog sind untere Nullstellenschranken erklärt. Für viele reelle Nullstellenschranken spielt die Teilindexmenge N=\{k\in\{0,1,\dots,n\}\mid a_k < 0\} der echt negativen Koeffizienten von f eine besondere Rolle. Beispiele reeller Nullstellenschranken für normierte Polynome f = X^n+\sum_{i=0}^{n-1}a_i X^i sind:

  • \max\left\{\big(|N|\cdot |a_i|\big)^{\frac{1}{n-i}}\mid i\in N\right\} ist eine obere reelle Nullstellenschranke (Cauchy-Regel),
  • \min\{x\in\R: f^{(i)}(x)\geq 0\ \mathrm{f\ddot ur\ alle}\ i=0,\ldots,n\} ist eine obere reelle Nullstellenschranke (Newton-Regel);
  • Jedes B\in\R_+, das die Ungleichung B^n\geq \sum_{i=0}^{n-1}|a_i|B^i erfüllt, ist eine reelle Nullstellenschranke (das so definierte B ist sogar eine Schranke für die komplexen Nullstellen komplexer Polynome). Spezialfälle hiervon sind (s. auch Satz von Gerschgorin)
    • 1 + \max_{i=0,\dots,n-1} |a_i| und
    • \max\left(1, \sum_{i=0}^{n-1}|a_i|\right).
  • Jedes B\in\R_+, das die Ungleichung B^n\geq \sum_{i\in N}|a_i|B^i erfüllt, ist eine obere reelle Nullstellenschranke. Spezialfälle hiervon sind
    • 1 + \max_{i\in N} |a_i|,
    • \max\left(1, \sum_{i\in N}|a_i|\right).

Komplexe Nullstellenschranken

Für komplexe Polynome f\in\Bbb C[X] sind als Pendant zu den reellen Nullstellenschranken Kreise um den Nullpunkt der komplexen Zahlenebene üblich, deren Radius so groß zu wählen ist, dass alle (bzw. je nach Anwendung auch nur „einige“) komplexen Nullstellen des Polynoms auf der Kreisscheibe mit diesem Radius liegen. Eine Zahl B\in\R_+ heißt komplexe Nullstellenschranke des Polynoms f\in\Bbb C[X], wenn alle Nullstellen von f auf der Kreissscheibe um den Nullpunkt mit Radius B liegen (oder anders formuliert: wenn der Betrag jeder Nullstelle kleiner oder gleich B ist). Ein Ergebnis für komplexe Polynome ist:

  • Jedes B\in\R_+, das die Ungleichung |a_k|B^k\geq \sum_{i\in\{0,\dots,n\}\setminus\{k\}}|a_i|B^i erfüllt, definiert einen Kreis in der komplexen Ebene mit Radius B um den Nullpunkt, der genau k komplexe Nullstellen enthält (Folgerung aus dem Satz von Rouché). Diese Ungleichung ist für k=0,n immer lösbar, aber nicht notwendig für jeden Index k=1,...,n−1.
  • Im Fall k=n ergibt sich die schon für reelle Polynome angegebene Schranke für den Betrag aller Nullstellen. Alle dort angegebenen direkten Berechnungen von B gelten weiter.
  • Im Fall k=0 ergibt sich ein Kreis, der keine Nullstellen enthält. 1/B ist dann eine Schranke für alle Nullstellen des „reziproken“ Polynoms xnf(1 / x) / a0.

Lösungsformeln

Prinzipiell gibt es mehrere Möglichkeiten, die Nullstellen eines Polynoms zu bestimmen. Allgemeine Iterationsverfahren, wie das Newton-Verfahren und die Regula Falsi oder auf Polynome spezialisierte Iterationsverfahren, wie das Bairstow-Verfahren oder das Weierstraß-(Durand-Kerner)-Verfahren sind einerseits auf jedes Polynom anwendbar, verlieren allerdings bei mehrfachen oder dicht beieinanderliegenden Nullstellen an Genauigkeit und Konvergenzgeschwindigkeit.

Für quadratische Gleichungen, kubische Gleichungen und quartische Gleichungen gibt es allgemeine Lösungsformeln, für Polynome höheren Grades gibt es Lösungsformeln, sofern diese spezielle Formen haben:

  • Reziproke Polynome haben die Form
f(x) = c_0 \cdot x^n + c_1 \cdot x^{n-1} + ... + c_1 \cdot x + c_0
d. h. für den i-ten Koeffizienten gilt  c_i = c_{n-i} \, ; anders gesagt: die Koeffizienten sind symmetrisch. Für diese Polynome und solche, die eine leichte Modifikation dieser Symmetriebedingung erfüllen, kann die Nullstellenbestimmung mit Hilfe der Substitution z = x + 1 / x (bzw. z = x − 1 / x) auf eine Polynomgleichung reduziert werden, deren Grad halb so groß ist. Für Details siehe reziprokes Polynom.
  • Binome haben die Form  f(x) = x^n + c\,
Setzen wir c als reell voraus, so sind die n Lösungen Vielfache der komplexen n-ten Einheitswurzeln:
 x_k = \sqrt[n]{\vert c \vert } \cdot \exp\left({2k\pi\mathrm{i}\over n}\right), \quad c < 0
 x_k = \sqrt[n]{c} \cdot \exp\left({(2k+1)\pi\mathrm{i}\over n}\right), \quad c \geq 0 ,

wobei k=0,\dots, n-1 durchläuft.

  • Polynome, die nur gerade Potenzen von x enthalten, haben die Form:
 f(x) = c_n \cdot x^n + c_{n-2} \cdot x^{n-2} + c_{n-4} \cdot x^{n-4} + ... + c_4 \cdot x^4 + c_2 \cdot x^2 + c_0
Die Lösung erfolgt durch die Substitution  z = x^2 \, . Hat man eine Lösung für z1 gefunden, so ist zu berücksichtigen, dass daraus zwei Lösungen für x abzuleiten sind:
 x_1 = \sqrt{z_1} und  x_2 = - \sqrt{z_1}
  • Polynome, die nur ungerade Potenzen von x enthalten, haben die Form:
 f(x) = c_n \cdot x^n + c_{n-2} \cdot x^{n-2} + ... + c_5 \cdot x^5 + c_3 \cdot x^3 + c_1 \cdot x
Hier ist offensichtlich 0 eine Nullstelle des Polynoms. Man dividiert das Polynom durch x aus und behandelt es dann wie ein Polynom (n-1)-ten Grades, welches nur gerade Potenzen von x enthält

Polynome in der linearen Algebra

Polynome in der abstrakten Algebra

Definition

In der abstrakten Algebra ist ein Polynom eine formale Summe der Form

f = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0,

wobei die Koeffizienten ai aus einem Ring R stammen und X ein formales Symbol ist.

Zwei Polynome sind genau dann gleich, wenn sie in allen Koeffizienten übereinstimmen. Polynome werden koeffizientenweise addiert und die Multiplikation ergibt sich mit dem Distributivgesetz aus den Regeln

X \cdot a = a \cdot X für alle a \in R
X^m \cdot X^n = X^{m + n} für natürliche Zahlen m und n.

Als Produkt ergibt sich aus der Cauchy-Produktformel :

 \Big(\sum_{i=0}^n a_ix^i\Big)\cdot\Big(\sum_{k=0}^m b_kx^k\Big)= \sum_{i=0}^{n+m}\Big(\sum_{k=0}^i a_k b_{i-k}\Big)  x^i

wobei ak = 0 für alle k > n und bik = 0 für alle ik > m.

Stellt man Polynome durch die Folge ihrer Koeffizienten dar, dann ist das Produkt zweier Polynome die Faltung ihrer Koeffizientenfolgen.

Polynomfunktion

Indem man an Stelle von X ein Element x des Rings R einsetzt, erhält man ein Element f(x) von R als Bild. Diese Zuordnung x\mapsto f(x) ist eine Funktion von R nach R, die von f induzierte Funktion, eine Polynomfunktion.

In den Formeln wird dieser Unterschied nicht deutlich; meist schreibt man jedoch Unbestimmte als Großbuchstaben und Ringelemente als Kleinbuchstaben.

Die Unterscheidung ist jedoch wichtig, weil verschiedene Polynome dieselbe Polynomfunktion induzieren können. Ist beispielsweise R der Restklassenring \mathbb Z/3\mathbb Z, so induzieren die beiden Polynome

f(X)=X(X-\bar1)(X-\bar2)=X^3-\bar3X^2+\bar2X=X^3-X

und

g(X) = 0

beide die Nullfunktion

f(x) = g(x) = 0 für alle x\in\mathbb Z/3\mathbb Z=\{\bar0,\bar1,\bar2\}.

Für Polynome über den reellen oder ganzen Zahlen oder allgemein jedem unendlichen Integritätsbereich ist ein Polynom jedoch durch die induzierte Polynomfunktion bestimmt.

Polynomring

Die Menge aller Polynome mit Koeffizienten in einem Ring R und der Unbestimmten X bezeichnet man als R[X]. Sie ist mit der oben angegebenen Addition und Multiplikation ein Ring, der so genannte Polynomring über R.

Auch die Menge der Polynomfunktionen über dem Ring R bildet einen Ring, der jedoch nur selten betrachtet wird. Es gibt einen natürlichen Ring-Homomorphismus von R[X] in den Ring der Polynomfunktionen, dessen Kern die Menge der Polynome ist, die die Nullfunktion induzieren.

Für weitere Informationen siehe den Artikel Polynomring.

Verallgemeinerung

Allgemein versteht man jede Summe von Monomen der Form a_{i_1,\ldots,i_n}X_1^{i_1}\cdots X_n^{i_n} als Polynom (in mehreren Unbestimmten):

P(X_1, \ldots, X_n) = \sum_{i_1,\ldots,i_n}a_{i_1,\ldots,i_n}X_1^{i_1}\cdots X_n^{i_n}
Lies: „Groß-p von Groß-x-1 bis Groß-x-n (ist) gleich die Summe über alle i-1 bis i-n von a-i-1-bis-i-n mal Groß-x-1 hoch i-1 bis Groß-x-n hoch i-n“

Die Größe i_1+\ldots+i_n heißt der Totalgrad eines Monoms X_1^{i_1}\cdots X_n^{i_n}. Haben alle (nichtverschwindenden) Monome in einem Polynom denselben Totalgrad, so heißt es homogen. Der maximale Totalgrad aller nichtverschwindenden Monome ist der Grad des Polynoms.

Die maximale Anzahl der möglichen Monome eines bestimmten Grades[1] kann man mit folgender Formel berechnen:

Lies: oder

Wobei n die Anzahl der vorkommenden Variablen und k der Grad des Polynoms ist. Anschaulich wird hier ein Problem von Kombinationen mit Wiederholung (Zurücklegen) betrachtet.

Summiert man die Anzahl der möglichen Monome des Grades 0 bis k erhält man für die Anzahl der möglichen Monome in einem Polynom bestimmten Grades folgende Formel:

Lies: oder

Sind alle Unbestimmten in gewisser Weise „gleichberechtigt“, so heißt das Polynom symmetrisch. Gemeint ist: wenn das Polynom sich bei Vertauschungen der Variablen nicht ändert.

Auch die Polynome in den n Unbestimmten X_1 \ldots X_nüber dem Ring R bilden einen Polynomring, geschrieben als R[X_1, \ldots, X_n].

Geht man zu unendlichen Reihen der Form

f = \sum_{i=0}^\infty a_i X^i
Lies: „f (ist) gleich die Summe von i gleich Null bis Unendlich von a-i (mal) (Groß-) x hoch i“

über, erhält man formale Potenzreihen.

Lässt man auch negative Exponenten zu:

 f = \sum_{i=-N}^\infty a_i X^i
Lies: „f (ist) gleich die Summe von i gleich minus (Groß-) n bis Unendlich von a−i (mal) (Groß-) x hoch i“

dann erhält man formale Laurentreihen.

Weblinks

Einzelnachweise

  1. Ernst Kunz: Einführung in die algebraische Geometrie, S. 213, Vieweg+Teubner, Wiesbaden 1997, ISBN: 3528072873

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Absolutglied — wird in einer Gleichung zwischen bekannten und unbekannten Größen das von den letzteren freie Glied genannt, z.B. in a x2 + b x + c = 0 ist c das Absolutglied. Mehmke …   Lexikon der gesamten Technik

  • Übertragungsfunktion (Laplacetransformation) — Ein lineares Übertragungsglied mit dem Eingangssignal u und Ausgangssignal y. Die Ausgangsgröße y(t) eines dynamischen Übertragungssystems mit konzentrierten oder verteilten Energiespeichern ist abhängig von den Systemeigenschaften und von der… …   Deutsch Wikipedia

  • Systemtheorie (Ingenieurwissenschaften) — Der Begriff der Systemtheorie wird in verschiedenen wissenschaftlichen Disziplinen angewendet und hat in Bezug auf den Primärbegriff System keine einheitliche Bedeutung. Systeme können sich als physikalische, ökologische, ökonomische, soziale… …   Deutsch Wikipedia

  • Differentialgleichungen — Differentialgleichungen, Gleichungen, in denen außer den unabhängigen und abhängigen Veränderlichen auch Differentialquotienten der letzteren nach den ersteren vorkommen. Man unterscheidet zunächst totale Differentialgleichungen, bei denen nur… …   Lexikon der gesamten Technik

  • Gleichungen [1] — Gleichungen. Es handelt sich hier nicht um identische Gleichungen, die (wie z.B. (a + b) (a – b) = a2 – b2) für alle beliebigen Werte der darin vorkommenden Größen richtig sind (s. Identitäten), sondern um Gleichungen im engeren Sinne,… …   Lexikon der gesamten Technik

  • ABC-Formel — Unter einer quadratischen Gleichung versteht man eine mathematische Gleichung der Form ax2 + bx + c = 0. Dabei sind a,b,c Parameter und x die Unbekannte. Die linke Seite dieser Gleichung ist also ein beliebiges Polynom des Grades 2. Geometrisch… …   Deutsch Wikipedia

  • Abc-Formel — Unter einer quadratischen Gleichung versteht man eine mathematische Gleichung der Form ax2 + bx + c = 0. Dabei sind a,b,c Parameter und x die Unbekannte. Die linke Seite dieser Gleichung ist also ein beliebiges Polynom des Grades 2. Geometrisch… …   Deutsch Wikipedia

  • Absolutes Glied — In der Mathematik ist ein Polynom (von griech. πολύ / polý und lat. nomen = „mehrnamig“) eine Summe von Vielfachen von Potenzen mit natürlichzahligen Exponenten einer Variablen, die in den meisten Fällen mit x bezeichnet wird. In der elementaren… …   Deutsch Wikipedia

  • Biquadratische Funktion — In der Mathematik ist ein Polynom (von griech. πολύ / polý und lat. nomen = „mehrnamig“) eine Summe von Vielfachen von Potenzen mit natürlichzahligen Exponenten einer Variablen, die in den meisten Fällen mit x bezeichnet wird. In der elementaren… …   Deutsch Wikipedia

  • Gleichung zweiten Grades — Unter einer quadratischen Gleichung versteht man eine mathematische Gleichung der Form ax2 + bx + c = 0. Dabei sind a,b,c Parameter und x die Unbekannte. Die linke Seite dieser Gleichung ist also ein beliebiges Polynom des Grades 2. Geometrisch… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”