Acot

Arkustangens und Arkuskotangens sind mathematische Funktionen. Sie sind die Umkehrfunktionen des Tangens bzw. des Kotangens und damit Arkusfunktionen. Da der Tangens periodisch ist, wird zur Umkehrung der Definitionsbereich von Tangens auf ( − π / 2,π / 2) beschränkt. Beim Arkuskotangens erfolgt eine Beschränkung auf  0 \le f(x) \le \pi .

Inhaltsverzeichnis

Eigenschaften

Graph der Funktion arctan(x)
Graph der Funktion arccot(x)
Arkustangens Arkuskotangens
Definitionsbereich  -\infty < x < \infty  -\infty < x < \infty
Wertebereich -\tfrac{\pi}{2} &amp;amp;lt; f(x) &amp;amp;lt; \tfrac{\pi}{2} 0 < f(x) < π
Monotonie streng monoton steigend streng monoton fallend
Symmetrien Ungerade Funktion: arctan( − x) = − arctanx Punktsymmetrie zu \left(x = 0, y = \tfrac{\pi}{2}\right)
arccotx = π − arccot( − x)
Asymptoten f(x) \to\pm \tfrac{\pi}{2} für x \to\pm\infty f(x) \to \pi für x \to -\infty
f(x) \to 0 für x \to + \infty
Nullstellen x = 0 keine
Sprungstellen keine keine
Polstellen keine keine
Extrema keine keine
Wendepunkte (0;0) \left(0; \tfrac \pi 2 \right)

Spezielle Werte

x 0\!\, 2-\sqrt3 \sqrt{1-\textstyle\frac25\sqrt5} \sqrt2-1 \textstyle\frac13\sqrt3 \sqrt{5-2\sqrt5} 1\!\, \sqrt3 \infty
arctan(x) 0\!\, \frac{\pi}{12} \frac{\pi}{10} \frac{\pi}{8} \frac{\pi}{6} \frac{\pi}{5} \frac{\pi}{4} \frac{\pi}{3} \frac{\pi}{2}

Wegen der Punktsymmetrie gelten die entsprechenden Wertepaare auch im Negativen. Solche speziellen Werte gibt es unendlich viele, aufgelistet sind nur die einfachsten.

Reihenentwicklung

Die Taylorreihe des Arkustangens mit dem Entwicklungspunkt x=0 lautet:


\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \cdots

Die Taylorreihe des Arkuskotangens mit dem Entwicklungspunkt x=0 lautet:


\arccot x= \frac{\pi}{2} - \sum_{k=0}^{\infty} (-1)^k\frac{x^{2k+1}}{2k+1}= \frac{\pi}{2}- x + \frac13 x^3 - \frac15 x^5 + \frac17 x^7- \cdots

Diese Reihen konvergieren genau dann, wenn |x| \le 1 und x\neq\pm i ist. Zur Berechnung des Arkustangens für |x| &amp;amp;gt; 1\!\, kann man ihn auf einen Arkustangens von kleineren Argumenten zurückführen. Dazu kann man entweder die Funktionalgleichung hernehmen, oder (um ohne π auszukommen) die Gleichung


\arctan x = 2\arctan\frac{x}{1+\sqrt{1+x^2}}

Hiermit lässt sich das Argument nach mehrfacher Anwendung beliebig verkleinern, was eine sehr effiziente Berechnung durch die Reihe ermöglicht.

Berechnung der Kreiszahl \boldsymbol{\pi}\!\, mit Hilfe des Arkustangens

Die Reihenentwicklung kann zur näherungsweisen Berechnung der Zahl π verwendet werden: Die einfachste Formel ist der Spezialfall x = 1, die Leibniz-Formel

\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots

Da sie nur sehr langsam konvergiert, verwendete John Machin 1706 die kompliziertere Formel

\frac{\pi}{4} = 4 \arctan\frac{1}{5} - \arctan\frac{1}{239}

um die ersten 100 Nachkommastellen von π zu berechnen. Letztere konvergiert schneller und wird auch heute noch für die Berechnung von π verwendet.

Funktionalgleichung

Die Arkustangenswerte über 1 oder unter -1 lassen sich aus den Werten zwischen -1 und 1 ableiten:

\arctan \frac{1}{x} = \sgn(x)\cdot\frac{\pi}{2} - \arctan x

Die Arkuskotangenswerte über 1 oder unter -1 lassen sich aus den Werten zwischen -1 und 1 ableiten:

\arccot \frac{1}{x} = (2-\sgn(x))\frac{\pi}{2} - \arccot x

Ableitungen

Arkustangens:

\frac{\mathrm d}{\mathrm dx}\arctan(x)=\frac{1}{1+x^2}=\cos^2(\arctan(x))
\frac{\mathrm d}{\mathrm dx} \arctan(ax+b) =  \frac{a}{1+(ax+b)^2}

Arkuskotangens:

\frac{\mathrm d}{\mathrm dx} \arccot(x) = -\frac{1}{1+x^2}.
\frac{\mathrm d}{\mathrm dx} \arccot(ax+b) = - \frac{\mathrm d}{\mathrm dx} \arctan(ax+b)= - \frac{a}{1 + (ax+b)^2}

Stammfunktionen

Arkustangens:

Der Arkustangens spielt eine wesentliche Rolle bei der symbolischen Integration von Ausdrücken der Form

\frac1{ax^2+bx+c}.

Ist die Diskriminante D = b2 − 4ac nicht negativ, so kann man eine Stammfunktion mittels Partialbruchzerlegung bestimmen. Ist die Diskriminante negativ, so kann man den Ausdruck durch die Substitution

u=\frac{2ax+b}{\sqrt{-D}}

in die Form

\frac{4a}{-D}\,\frac1{1+u^2}

bringen; eine Stammfunktion ist also

\frac2{\sqrt{-D}}\arctan\frac{2ax+b}{\sqrt{-D}}.

Eine Stammfunktion des Arkustangens selbst ist

\int \arctan \frac{x}{a} \,\mathrm dx = x \, \arctan \frac{x}{a}  - \frac{a}{2} \ln\left(a^2 + x^2\right).

Arkuskotangens:

F(x) = x \, \arccot x + \frac{1}{2}\, \ln \left( 1 + x^2 \right) + C
 \int \arccot \frac{x}{a} \, \mathrm dx=  x \, \arccot \frac{x}{a} + \frac{a}{2} \, \ln(a^2 + x^2)

Komplexes Argument


\arctan(a+b\,\mathrm{i}) = \left\{
\begin{array}{ll} \displaystyle
\frac12 \!\left(\arctan \frac{a^2+b^2-1}{2a} + \frac\pi2 \sgn(a) \right)
 &amp;amp;amp; \; a\neq0 \\
0
 &amp;amp;amp; \; a=0,\, |b|\leq1 \\ \displaystyle
\frac\pi2 \sgn(b)
 &amp;amp;amp; \; a=0,\, |b|&amp;amp;gt;1 \\
\end{array} \right\}

+ \mathrm{i} \cdot \frac12 \operatorname{artanh} \frac{2b}{a^2+b^2+1}
  mit  a,b \in \mathbb{R}


\arccot(a+b\,\mathrm{i}) = \frac\pi2 - \arctan(a+b\,\mathrm{i})

Anmerkungen

Arkustangens:

Man kann den Arkustangens durch den komplexen Logarithmus ausdrücken:

\arctan z=\frac{\ln(1+\mathrm iz)-\ln(1-\mathrm iz)}{2\mathrm i} = \frac{1}{2\mathrm i} \ln  \frac{1+\mathrm iz}{1-\mathrm iz}

Arkuskotangens:

Man kann den Arkuskotangens durch einen komplexen Logarithmus ausdrücken:

\arccot z=\frac{\pi}{2}-\frac{\ln(1+\mathrm iz)-\ln(1-\mathrm iz)}{2\mathrm i}

Zwischen Arkustangens und Arkuskotangens besteht folgende Beziehung:

 \arccot z = \frac{\pi}{2} - \arctan z

Näherungsweise Berechnung

Es gelten folgende Näherungen:

Arkustangens (maximale Abweichung unter 0,005 Radianten):

 \arctan x \approx \frac{x}{1 + 0{,}28x^2} \quad \mathrm{f\ddot ur} \quad |x| \le 1
 \arctan x \approx \frac{\pi}{2} - \frac{x}{x^2 + 0{,}28} \quad \mathrm{f\ddot ur} \quad x &amp;amp;gt; 1

Weitere Informationen dazu und eine genauere Approximation hier.

Arkuskotangens:

 \arccot x \approx \frac{3x}{3x^2-1} \quad \mathrm{f\ddot ur} \quad |x| \gg 1

Der „Arkustangens“ mit zwei Argumenten (atan2)

Diese Funktion dient bei der Umrechnung von kartesischen Koordinaten P(x;y) in Polarkoordinaten P(r ; \varphi) der Ermittlung des Winkels \varphi. Da der Arkustangens mit einfachem Argument nicht die Möglichkeit bietet, den Winkel im korrekten Quadranten zu ermitteln, und außerdem die Tangensfunktion für einen Funktionswert von \pm \frac{\pi}{2} nicht umkehrbar ist, gibt es in verschiedenen Programmiersprachen (z. B. in C, Fortran) eine Funktion, die mit 2 Argumenten aufgerufen wird. Sie wird üblicherweise mit \operatorname{atan2}(y,x) o. Ä. bezeichnet.

Die Funktion \operatorname{atan2}(y,x) kann über die folgende Eigenschaft definiert werden: Sind x,y reelle Zahlen und r=\sqrt{x^2+y^2}, so gilt:

x = r\cdot\cos(\operatorname{atan2}(y,x))
y = r\cdot\sin(\operatorname{atan2}(y,x))

(r,\operatorname{atan2}(y,x)) sind hierbei die Polarkoordinaten des Punktes mit den kartesischen Koordinaten (x,y).

Definition

Eine von mehreren in der Praxis vorkommenden Definitionen:

\operatorname{atan2}(y,x) := \begin{cases}
\arctan\frac{y}{x} &amp;amp;amp; \mathrm{f\ddot ur}\ x &amp;amp;gt; 0\\
\arctan\frac{y}{x} + \pi &amp;amp;amp; \mathrm{f\ddot ur}\ x &amp;amp;lt; 0,\ y \geq 0\\
\arctan\frac{y}{x} - \pi &amp;amp;amp; \mathrm{f\ddot ur}\ x &amp;amp;lt; 0,\ y &amp;amp;lt; 0\\
+\pi/2 &amp;amp;amp; \mathrm{f\ddot ur}\ x = 0,\ y &amp;amp;gt; 0\\
-\pi/2 &amp;amp;amp; \mathrm{f\ddot ur}\ x = 0,\ y &amp;amp;lt; 0\\
0 &amp;amp;amp; \mathrm{f\ddot ur}\ x = 0,\ y = 0
\end{cases}

Für x = y = 0 ist die Funktion manchmal nicht definiert. Auch Sonderfälle wie Not a Number und Inf werden unterschiedlich behandelt.

Wertebereich

Bei der o. g. Definition:

-\pi &amp;amp;lt; \operatorname{atan2}(y,x) \le \pi

Anmerkungen

Eine weitere Möglichkeit besteht darin, die Funktion \operatorname{atan2}(y,x) für (x,y) ≠ (0,0) über den Hauptwert des komplexen Logarithmus zu definieren:


\operatorname{atan2}(y,x) =\arg(x+\mathrm i\,y) =\frac{1}{\mathrm i}\ln\frac{x+\mathrm i\,y}{\sqrt{x^2+y^2}}

Diese Funktion wird zum Beispiel in der inversen Kinematik genutzt, um korrekte Gelenkeinstellungen berechnen zu können.

Siehe auch


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • acot — acot·y·le·don; acot·y·le·don·ous; …   English syllables

  • ACOT — • Advisory Committee on Offshore Technology …   Maritime acronyms and abbreviations

  • ACOT — abbr. Apple Classrooms Of Tomorrow (Apple) …   United dictionary of abbreviations and acronyms

  • Thierry Acot-Mirande — (born in 1960) is a film critic, poet and French science fiction author.A film critic for Projects/Programmes in the 1980s, Thierry Acot Mirande was also a contributor to the fanzine Le Cinématographe dans le boudoir . Strongly influenced by the… …   Wikipedia

  • Thierry acot-mirande — Cet article fait partie de la série Science fiction La SF à l’écran autre A B C …   Wikipédia en Français

  • Thierry Acot-Mirande — (né en 1960), critique, poète et écrivain de science fiction français. Critique de cinéma pour l agence « Projets/Programmes » dans les années 1980, Thierry Acot Mirande a également collaboré au fanzine Le Cinématographe dans le boudoir …   Wikipédia en Français

  • acotyledon — acot·y·le·don …   English syllables

  • acotyledonous — acot·y·le·don·ous …   English syllables

  • Der letzte Tango in Paris — Filmdaten Deutscher Titel Der letzte Tango in Paris Originaltitel Ultimo tango a Parigi …   Deutsch Wikipedia

  • Ultimo tango a Parigi — Filmdaten Deutscher Titel: Der letzte Tango in Paris Originaltitel: Ultimo tango a Parigi Produktionsland: Italien, Frankreich Erscheinungsjahr: 1972 Länge: 124 Minuten Originalsprache …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”