Additionsverfahren (Mathematik)

Das Additionsverfahren ist ein Verfahren, das zur Lösung von Gleichungssystemen genutzt werden kann. Der wahrscheinlich bekannteste Lösungsansatz zur Lösung von Gleichungssystemen, das Gaußsche Eliminationsverfahren, bedient sich des Additionsverfahrens, es ist aber auch allgemein bei der Lösung von Gleichungssystemen von Bedeutung.

Mit Hilfe des Additionsverfahrens werden Gleichungen addiert. Dies geschieht in der Regel so, dass eine oder mehrere Variablen (Unbekannte) in den Gleichungen eliminiert werden.

Beispiel

Mit Hilfe des Additionsverfahrens soll das folgende Gleichungssystem gelöst werden:

\begin{matrix}
(1) & 5x & + & 3y & = & 5\\ 
(2) & 3x & + &  y & = & -1
\end{matrix}

Dazu muss eine der beiden Gleichungen so umgeformt werden, dass bei einer Addition der beiden Gleichungen eine Variable verschwindet. In diesem Beispiel multiplizieren wir dazu Gleichung (2) auf beiden Seiten mit − 3.

(2) \quad 3x + y = -1 | \cdot (-3)

Dadurch erhalten wir ein gleichwertiges Gleichungssystem, in dem der Term − 3y vorkommt.

\begin{matrix}
(1) &  5x & + & 3y & = & 5 \\
(2') & -9x & - & 3y & = & 3
\end{matrix}

Nun werden beide Gleichungen des Systems addiert und somit in einer Gleichung zusammengefasst:

\begin{matrix}
(5x +  3y) & + & (-9x - 3y) & = & 5 + 3 \\
    - 4x   & + &      0y    & = & 8 \\
     -4x   &   &            & = & 8
\end{matrix}

Anschließend löst man nach der verbliebenen Variablen x auf:

\begin{matrix}
-4x & = & 8 & | : (-4) \\
x   & = & -2&
\end{matrix}

Damit ist der Wert der ersten Variable bekannt. Diesen Wert (x = − 2) setzen wir in Gleichung (1) ein, um den Wert der zweiten Variable zu berechnen.

\begin{matrix}
5 \cdot (-2) & + & 3y & = & 5 \\
-10          & + & 3y & = & 5  &|& +    & 10 \\
             &   & 3y & = & 15 &|& : & 3  \\
             &   &  y & = & 5
\end{matrix}

Dadurch erhalten wir den Wert für die zweite Variable. Die Lösung des Gleichungssystem ist somit x = − 2 und y = 5.

Siehe auch


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Additionsverfahren — Der Begriff Additionsverfahren bezeichnet Eine spezielle Art der Lichtmischung, siehe Additive Farbmischung Ein mathematisches Verfahren in der Gleichungslehre zur Lösung von linearen Gleichungssystemen, siehe Additionsverfahren (Mathematik)… …   Deutsch Wikipedia

  • Formelsammlung Algebra — Die Formelsammlung zur Algebra ist ein Teil der Formelsammlung, in der auch Formeln der anderen Fachbereiche zu finden sind. Inhaltsverzeichnis 1 Grundrechenarten 2 Arithmetische Notation 3 Axiome 4 Elementare Funktionen 4.1 …   Deutsch Wikipedia

  • Erweiterte Koeffizientenmatrix — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

  • Homogene Gleichung — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

  • Homogenes Gleichungssystem — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

  • Koeffizientenmatrix — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

  • Reduzierte Stufenform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

  • Stufenform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

  • Treppennormalform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

  • Zeilenstufenform — Als lineares Gleichungssystem bezeichnet man in der linearen Algebra ein System aus linearen Gleichungen, die mehrere unbekannte Größen (Variable) enthalten. Ein entsprechendes System für drei Unbekannte x1, x2, x3 sieht beispielsweise wie folgt… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”