Dysonsphäre

Dysonsphäre
Kugelschnitt-Diagramm einer idealisierten Dyson-Sphäre mit einem Radius von 1 AE in Anlehnung an Dysons Originalkonzept

Eine Dyson-Sphäre [ˈdaɪ̯snˌsfɛːrə] ist ein hypothetisches Konstrukt, das einen Stern im Idealfall vollständig kugelförmig umschließt, um dessen Energie absorbieren oder umlenken und damit optimal nutzen zu können.

Inhaltsverzeichnis

Hintergrund

Solch eine Struktur wurde erstmals von dem Physiker Freeman Dyson in der Juni-Ausgabe der Zeitschrift Science im Jahr 1960 beschrieben. Dabei ging es darum, bei der Suche nach fortgeschrittenen außerirdischen Intelligenzen nach Infrarotquellen zu suchen, da die Energie des jeweiligen Zentralgestirns auch nach ihrer vollständigen Nutzung für die Zwecke jener Zivilisation wieder abgegeben werden muss (siehe Energieerhaltungssatz). Das würde aber, nachdem die Energie des kurzwelligen Lichts dazu genutzt wurde, um die Entropie des Systems zu verringern, in langwelligerer Form, und daher im Infrarotbereich, geschehen.

Der Originalvorschlag von Dyson ging nicht weiter auf die Details der Konstruktion eines solchen Objektes ein, sondern konzentrierte sich mehr auf das fundamentalere Thema, wie eine fortgeschrittene Zivilisation ihre Energieproduktion auf das für ein Planetensystem erreichbare Maximum ausweiten kann. Eine solche Zivilisation würde als Typ II nach der Kardaschow-Skala, welche von dem Astronomen Nikolai Kardaschow entwickelt wurde, klassifiziert.

Obwohl Dyson als „Erfinder“ der Dyson-Sphäre gilt, wurde er nach eigener Angabe von ähnlichen Ideen in Olaf Stapledons Science-Fiction-Roman Star Maker, der 1937 erschien, inspiriert. Eine noch frühere mögliche Anregung sowohl für Stapledon als auch für Dyson ist die Bernal-Sphäre, die erstmals 1929 von John Desmond Bernal beschrieben wurde.[1]

Eigenschaften

Der Stern innerhalb einer Dyson-Sphäre wäre nicht direkt sichtbar, jedoch würde sie selbst eine dem Energieausstoß des Sterns entsprechende Energiemenge in Form von Infrarotstrahlung emittieren. Dyson hat vorgeschlagen, dass Astronomen nach solchen anomalen „Sternen“ suchen, um hochentwickelte außerirdische Kulturen zu entdecken.

Die symmetrische Konstruktion um das Zentralgestirn herum ermöglicht einen antriebslosen Betrieb der Dyson-Sphäre, lediglich Kurskorrekturen sind notwendig.

Typen

Es gibt mehrere Arten von Dyson-„Sphären“, die vorgeschlagen wurden.

Der Schwarm

Dyson-Schwarm gebildet aus einer Vielzahl von Einzelobjekten
Dyson-Schwarm-Animation

Die realistischste und am ehesten Dysons ursprünglichen Vorstellungen entsprechende Form ist der Dyson-Schwarm. Er besteht aus einer großen Anzahl unabhängiger Solarkollektoren, die den Stern umkreisen. Sie könnten sich in Größe und Form unterscheiden und gegebenenfalls eigenständige Habitate bilden. Es wurde eine Vielzahl von Vorschlägen für mögliche Verteilungsmuster gemacht, jeder mit seinen eigenen Vorzügen und Nachteilen. In jedem Fall würden einige Kollektoren einen Teil ihres Umlaufs im Schatten anderer verbringen und somit die Effizienz des Schwarms etwas herabsetzen.

Die Schale

Eine weitere Form ist die feste Schale, die den Stern vollständig umschließt. Diese Variante ist sehr beliebt in der Sciencefiction und wird häufig auch mit einer Atmosphäre auf der Innenseite beschrieben, die einen gewaltigen Lebensraum für biologische Organismen bildet. Mit den heute bekannten physikalischen Gesetzen ist eine solche Atmosphäre jedoch nicht realisierbar, da eine symmetrische, hohle Sphäre in ihrem Inneren kein eigenes Gravitationsfeld hat, und die Gravitation der Sonne die Atmosphäre und alle beweglichen Objekte in die Sonne stürzen lassen würde. Eine Atmosphäre auf der Außenseite wäre möglich, jedoch müsste man dort ohne direktes Sonnenlicht auskommen. Außerdem würde beim Erdbahnradius die Gravitation der Sonne nur 5,93*10-3 m/s2 betragen. Aufgrund des Auftretens enormer Tangentialkräfte ist eine Realisierung mit heutzutage verfügbaren Materialien (z. B. Stahl) auf Grund mangelnder Druckfestigkeit nicht machbar. Es ist unklar, ob mittels neuartiger Werkstoffe (z. B. nanoporöse Metallschäume) die mindestens erforderliche Druckfestigkeit von etwa 10000 kN/mm² jemals erreicht werden kann.

Die Blase

Dyson-Blase, hier zum besseren Verständnis durchsichtig dargestellt.

Eine dritte Form ist die sog. "Dyson-Blase", die nur aus sehr wenig Masse besteht und durch den Strahlungsdruck der Sonne und den Sonnenwind stabil gehalten wird. Ein Stützgerüst ist nicht notwendig. In der nebenstehenden bildlichen Darstellung ist das Zentralgestirn zum besseren Verständnis zu sehen. Tatsächlich würde aber das Material der Blase den größten Teil des sichtbaren Lichts zwecks Energiegewinnung absorbieren und damit den Stern verdecken.

Berechnung der durch den Strahlungsdruck abgestützten Masse

Der Strahlungsdruck hängt von der absorbierten bzw. abgestrahlten Leistung pro Fläche ab. Die Wellenlänge der Strahlung spielt dabei keine Rolle.

Beispielsweise beträgt bei einem Radius von 149.600.000 km (entspricht Erdbahnradius) die Solarkonstante 1367 W/m2 und der resultierende Strahlungsdruck (bei Absorption) 4,56*10-6 N/m2. Das Gegengewicht bildet die Gravitation der Sonne mit 5,93*10-3 m/s2. Um ein Segment der Blase in der Schwebe zu halten, müssen sich beide gegeneinander gerichteten Kräfte aufheben. Dies wäre bei einer Fläche mit 7,69*10-4 kg/m2 der Fall. Der Strahlungsdruck stützt das Blasensegment gegen die Gravitation ab. Diese Masse pro Fläche gilt auch für alle anderen Abstände zur Sonne, denn sowohl der Strahlungsdruck als auch die Gravitation nehmen nach außen hin mit 1/r2 ab.

Für eine Dyson-Blase mit dem Erdbahnradius ergibt sich bei einer Gesamtfläche von 2,81*1023 m2 eine Masse von 2,16*1020 kg. Das entspricht ungefähr der Masse eines größeren Planetoiden.

Wenn die Dichte des verwendeten Materials 1 g/cm3 betragen würde (etwa die Dichte einer Kunststofffolie), dann betrüge die Schichtdicke der Dyson-Blase nur 769 nm. Das entspricht der Wellenlänge von rotem Licht nahe dem Infrarot. Die dadurch verringerte Absorptionsfähigkeit einer solch dünnen Schicht schmälert die Energieausbeute der Gesamtanlage.

Verstärkung des Strahlungsdruckes

Strahlungs-Leistungs-Bilanz in einer Dyson-Blase

Die gesamte Außenfläche der Blase gibt genau die gleiche Strahlungsleistung ab, wie sie die Sonne erzeugt, kurz 1 PSol. Es stellt sich ein Strahlungsgleichgewicht ein. Das gilt auch bei verändertem Spektrum.

Bei einer beidseitig schwarzen Dyson-Blase hat das zur Folge, dass auch ihre gesamte Innenfläche 1 PSol abgibt, denn bei geringer Schichtdicke hat das Material innen und außen die gleiche Temperatur. Die Druckwirkung der nach außen und innen abgegebenen Strahlung heben sich gegenseitig auf.

Die nach innen abgegebene Strahlungsleistung wird letztlich von der (jeweils gegenüberliegenden Seite der) Blase selbst wieder absorbiert. Die Innenfläche absorbiert also 1 PSol von der Sonne und zusätzlich 1 PSol von ihrer jeweils gegenüber liegenden eigenen Innenfläche, also zusammen 2 PSol. Der Strahlungsdruck ist demnach doppelt so groß wie bei einem einzelnen Sonnensegel und kann also eine doppelt so große Masse abstützen.

Ein zusätzlicher Strahlungsdruck entsteht durch die an der Innenseite reflektierte Strahlung. Zwar wird letztendlich die gesamte von der Sonne abgegebene Strahlung an der Innenseite der Blase absorbiert, aber zwischenzeitlich können Teile dieser Strahlung einige Mal hin- und her reflektiert werden. Jede Reflexion erhöht den Gesamt-Strahlungsdruck und damit auch die abstützbare Masse. Bei gut reflektierender Innenbeschichtung, zum Beispiel mit Aluminium, würde durch mehrfache Reflexion die Strahlungsdichte im Inneren der Dyson-Blase sehr hohe Werte annehmen. Eine Aufheizung und Ausdehnung der äußeren Schichten der Sonne wäre allerdings die Folge.

Der Ring

Dyson-Ring mit einer Sonne im Mittelpunkt, nach dem Vorbild von Larry Niven

Der Ring umgibt einen Stern, z. B. mit einem Radius von etwa einer Astronomischen Einheit. Somit stellt der Ring eine unvollständige Schale dar. Wegen der enormen Tangentialkräfte ist eine realistische Konstruktion nur mit einem Gleichgewicht von Fliehkraft und Gravitationskraft möglich, was bedeutet, dass auf der Oberfläche des Ringes Schwerelosigkeit herrscht. Beispiel aus der Science-Fiction ist die Ringwelt von Larry Niven.

Matroschka-Gehirn

Ein Matroschka-Gehirn (englisch Matrioshka brain) wiederum ist eine zwiebelförmige Ansammlung von Dyson-Sphären, deren Ziel nicht die Maximierung der bewohnbaren Oberfläche, sondern maximale Energieausbeute ist, mit welcher dann ein riesiger Computer betrieben wird. Die innerste Sphäre würde so nahe an den Stern platziert wie möglich und die Äußerste so weit außerhalb, wie noch Energiegewinnung aus der Temperaturdifferenz zwischen der Nächstinneren und leerem Raum möglich ist.

Das Konzept wurde in den späten 1990er Jahren vom Informatiker Robert Bradbury entworfen.[2] In der Science-Fiction-Literatur wurde es unter anderem durch Charles Stross in seinem Roman Accelerando bekannt gemacht.


Einzelnachweise

  1. Dyson FAQ: Was Dyson First?
  2. Robert J. Bradbury: Matrioshka Brains. 16. August 2004 (online ; Stand: 25. Februar 2007). 

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”