+I-Effekt

Der Induktive-Hahn Effekt, Hahn-Effekt oder HI-Effekt ist in der organischen Chemie ein ladungsverändernder Effekt, der sowohl als +I-Effekt („elektronenschiebend“) als auch als −I-Effekt ("elektronenziehend") auftritt. Er wird durch funktionelle Gruppen oder auch durch einzelne Atome ausgelöst.

Er wird in der Chemie beobachtet, wenn Elektronegativitätsunterschiede zwischen Atomen oder funktionellen Gruppen eines Moleküls Atombindungen polarisieren. Der Begriff dient in der Chemie zur Charakterisierung von Elektronenpaarbindungen. Er wurde vom US-amerikanischen Chemiker Linus Carl Pauling eingeführt.

Inhaltsverzeichnis

Grundlage

Die Ursache dieser Effekte ist eine Asymmetrie in der Verteilung der Elektronen in einer Elektronenpaarbindung. Zwei Atome, die durch diese Elektronenpaarbindung verbunden sind, teilen sich zwei Elektronen. Diesen Elektronen ist kein fester Platz zugewiesen, sondern sie sind innerhalb dieser Verbindung frei beweglich. Die Elektronen werden zu dem Atom hingezogen, bei dem die Elektronegativität größer ist.

Man unterscheidet zwei Arten von I-Effekten: den +I-Effekt (sprich: positiver induktiver Effekt) und den −I-Effekt (sprich: negativer induktiver Effekt). Ein elektronegativeres Atom übt einen −I-Effekt aus, sodass sich die Elektronendichte bei dem anderen Atom verringert. Bei einem +I-Effekt werden die Elektronen von dem einen Atom weggeschoben und somit die Elektronendichte an dem anderen Atom erhöht. Die Bindung weist nun einen Dipolcharakter auf, der durch δ+ am Atom mit der geringeren Ladungsdichte und δ-am Atom mit der hohen Ladungsdichte gekennzeichnet wird.

Allgemeines

Atombindungen können, je nach Elektronegativität der Bindungspartner, unterschiedlich polar sein. Ist eines der Elemente elektronegativer, so halten sich die Elektronen häufiger in seiner Nähe auf. Dadurch verschiebt sich das Gleichgewicht der Ladungen, sodass das elektronegativere Element mehr oder weniger stark negativ polarisiert wird.

Der +I-Effekt: Die C–C-Doppelbindung weist beim Propen durch den +I-Effekt eine höhere Elektronendichte auf als beim Ethen

Als Beispiel ist hier Wasser (H2O) anzuführen. Durch die höhere Elektronegativität halten sich die Elektronen häufiger beim Sauerstoff-Atom auf. Im Wassermolekül wird dies durch δ in der Nähe des O-Atoms, sowie durch jeweils ein δ+ neben jedem der beiden H-Atome ausgedrückt. Oft wird das δ beim Sauerstoff etwas größer geschrieben. Dies ist üblich, da die δ-Ladung des Sauerstoff-Atoms doppelt so hoch ist wie die jedes einzelnen Wasserstoff-Atoms.

Tritt dies nun in einem Molekül auf, so wirkt die induktive Kraft auch auf die in einer Kette folgenden Atome, etwa so:

Clδ− –Cδ+++ –Cδ++ –Cδ+ –R

δ++ steht hierbei für eine höhere positive Teilladung als δ+

Das Chlor-Atom löst einen Induktionseffekt aus, der sich auf die drei folgenden C-Atome auswirkt. Die Stärke nimmt allerdings ab je weiter das betroffene Atom vom Auslösenden entfernt ist. Der Induktionseffekt kann sich, in Einzelfällen, auch auf angrenzende Moleküle auswirken.

Stärke und Reichweite

Um die Stärke des induktiven Effektes von Atomen oder Atomgruppen zu vergleichen, wird die Elektronegativität des Substituenten mit der Elektronegativität des Wasserstoffs verglichen.

Der induktive Effekt kann sich über mehrere Bindungen hinweg auf andere Atome oder Atomgruppen auswirken. Die Stärke nimmt jedoch mit dem Quadrat der Entfernung ab.

Man geht davon aus, dass sich induktive Effekte nicht weiter als drei benachbarte Bindungen auswirken.

Beispiel

In der Regel betrachtet man I-Effekte jedoch bei komplexeren Verbindungen. Dadurch ist es möglich, das Verhalten der Verbindungen zu analysieren.

Beispielsweise hat der −I-Effekt bei Trichloressigsäure weitergehende Auswirkungen. In dieser Verbindung üben drei Cl-Atome am C-Atom einen −I-Effekt aus. Dadurch zieht das C-Atom die Elektronen des ihm benachbarten C-Atoms zu sich, wodurch dieses C-Atom Elektronen vom benachbarten und einfach gebundenen Sauerstoff zu sich zieht. Die Bindung zwischen dem O-Atom und dem mit ihm verbundenen H-Atoms ist dadurch geschwächt und das H+-Ion (Proton) sehr leicht abspaltbar. In diesem Beispiel löst der −I-Effekt eine Kettenreaktion aus, die sich entscheidend auf das Verhalten des Moleküls auswirkt.

+I-Effekt

Einen +I-Effekt haben Teilchen, die elektronenschiebend wirken. Dies geschieht z.B., wenn das Teilchen negativ geladen ist, oder eine niedrige Elektronegativität besitzt. Ebenso ist der +I-Effekt bei der Ausbildung von Hybridorbitalen zu beobachten, so wirkt z.B. die Methylgruppe CH3 elektronenschiebend, auch wenn das aufgrund der C–C-Einfachbindung nicht einzusehen ist.

−I-Effekt

Den −I-Effekt haben Atome, die elektronenziehend wirken. Sie ziehen Elektronen zu sich. Dies kommt in der Regel durch hohe Elektronegativität oder eine positive Ladung zustande. Stark elektronegative Teilchen ziehen besonders stark Elektronen.

Induktiv wirkende Gruppen [1]

Hier sind einige induktiv wirkende Gruppen gelistet:

+I

  • t-Butylgruppe –C(CH3)3
  • i-Propylgruppe –CH(CH3)2
  • Sauerstoffanion –O
  • Alkylrest -R


I=0 (kein Induktiver Effekt)

  • Wasserstoffatom +H

−I

  • Sauerstoff in der Carbonylgruppe C=O
  • Hydroxylgruppe –OH
  • Iodatom –I
  • Bromatom –Br
  • Chloratom –Cl
  • Nitrogruppe –NO2
  • Aminogruppe –NH2
  • Carboxylgruppe –COOH
  • Fluoratom –F
  • Phenylgruppe –C6H5

Auswirkungen des Induktionseffektes

Die Auswirkungen des Induktionseffektes sind, dass andere polare Moleküle sich nun am besagten Molekül ausrichten und es angreifen können. Zudem hat der Induktionseffekt Einfluss auf die Lage der Zweit-Substituenten am Benzol. Radikale oder Carbeniumionen (Carbokationen), also Teilchen mit Elektronenmangel, werden durch Substituenten mit +I-Effekt stabilisiert und solche mit -I-Effekt destabilisiert. Abgesehen davon hat der induktive Effekt entscheidenden Einfluss auf die Säurestärke eines Moleküls. Verfügt ein Molekül also beispielsweise über einen stark elektronegativen (elektronenanziehenden) Substituenten, wird die Abspaltung eines Protons erleichtert (−I-Effekt). Umgekehrt führt ein elektronenschiebender Substituent zu einer geringen Säurestärke (+I-Effekt).

Siehe auch

Quellen

  1. M. Liersch: Chemie 2 Kurz und Klar, Auer 1996

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • I-Effekt — I Ef|fekt [I: Abk. für induktiv]; Syn.: induktiver Effekt, Induktionseffekt: Bez. für die von den Substituenten organischer Moleküle aufgrund ihrer ↑ Elektronegativitäten in den C Atomen der Grundgerüste induzierten Ladungsverschiebungen, die die …   Universal-Lexikon

  • -I-Effekt — Der Induktive Hahn Effekt, Hahn Effekt oder HI Effekt ist in der organischen Chemie ein ladungsverändernder Effekt, der sowohl als +I Effekt („elektronenschiebend“) als auch als −I Effekt ( elektronenziehend ) auftritt. Er wird durch funktionelle …   Deutsch Wikipedia

  • I-Effekt — Der Induktive Hahn Effekt, Hahn Effekt oder HI Effekt ist in der organischen Chemie ein ladungsverändernder Effekt, der sowohl als +I Effekt („elektronenschiebend“) als auch als −I Effekt ( elektronenziehend ) auftritt. Er wird durch funktionelle …   Deutsch Wikipedia

  • −I-Effekt — Der Induktive Hahn Effekt, Hahn Effekt oder HI Effekt ist in der organischen Chemie ein ladungsverändernder Effekt, der sowohl als +I Effekt („elektronenschiebend“) als auch als −I Effekt ( elektronenziehend ) auftritt. Er wird durch funktionelle …   Deutsch Wikipedia

  • Effekt [1] — Effekt, Wirkung, Leistung oder Arbeitsleistung, heißt bei Maschinen (sowohl Kraft als auch Arbeitsmaschinen) die von denselben in der Zeiteinheit, meist einer Sekunde, verrichtete mechanische Arbeit. Bei jeder Maschine hat man die theoretische… …   Lexikon der gesamten Technik

  • effekt — I s ( en, er) mängden arbete uträttat per tidsenhet, mäts i watt (joule per sekund) II s ( en, er) personlig tillhörighet, III s ( en, er) verkan, läkemedlets effekt på körförmågan , musik har en avslappnande effekt …   Clue 9 Svensk Ordbok

  • (I Can't Get No) Satisfaction — „(I Can’t Get No) Satisfaction“ ist ein Lied, das Mick Jagger und Keith Richards für ihre Band The Rolling Stones schrieben. Es wurde im Mai 1965 erstmals als Single veröffentlicht. Die Single wurde der erste Nummer 1 Charterfolg der Rolling… …   Deutsch Wikipedia

  • I Can’t Get No Satisfaction — „(I Can’t Get No) Satisfaction“ ist ein Lied, das Mick Jagger und Keith Richards für ihre Band The Rolling Stones schrieben. Es wurde im Mai 1965 erstmals als Single veröffentlicht. Die Single wurde der erste Nummer 1 Charterfolg der Rolling… …   Deutsch Wikipedia

  • Effékt — (lat.), Wirkung, Erfolg; in der Mechanik ist E. oder Leistung die in der Zeiteinheit geleistete Arbeit; die Einheit des E. ist das Sekunden Meterkilogramm, d.i. die Arbeit von 1 Meterkilogramm in der Sekunde, für größere Leistungen die …   Kleines Konversations-Lexikon

  • I’m Not in Love — 10cc Veröffentlichung Vereinigtes Konigreich 31.Mai 1975 Länge 6:06 (LP) 3:40 (Single) …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”