Kolmogorow-Smirnow-Test

Kolmogorow-Smirnow-Test

Der Kolmogorow-Smirnow-Test (KS-Test) (nach Andrei Nikolajewitsch Kolmogorow und Wladimir Iwanowitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen.

Mit seiner Hilfe kann anhand von Zufallsstichproben geprüft werden, ob

  • zwei Zufallsvariablen die gleiche Verteilung besitzen oder
  • eine Zufallsvariable einer zuvor angenommenen Wahrscheinlichkeitsverteilung folgt.

Im Rahmen des letzteren (Einstichproben-)Anwendungsproblems spricht man auch vom Kolmogorow-Smirnow-Anpassungstest (KSA-Test).

Inhaltsverzeichnis

Konzeption

Die Konzeption soll anhand des Anpassungstests erläutert werden, wobei der Vergleich zweier Merkmale analog zu verstehen ist. Man betrachtet ein statistisches Merkmal X, dessen Wahrscheinlichkeiten in der Grundgesamtheit unbekannt sind. Die zweiseitig formulierten Hypothesen lauten dann:

Nullhypothese :

\!\,H_0: F_X(x) = F_0(x)

(Die Zufallsvariable X besitzt die Wahrscheinlichkeitsverteilung F0.)

Alternativhypothese :

H_1: F_X(x) \neq F_0(x)

(Die Zufallsvariable X besitzt eine andere Wahrscheinlichkeitsverteilung als F0.)

Der Kolmogorow-Smirnow-Test vergleicht die empirische Verteilungsfunktion Fn mit F0, mittels der Teststatistik

d_n=\|F_n-F_0\|=\sup_x|F_n(x)-F_0(x)|,

wobei sup das Supremum bezeichnet.

Nach dem Gliwenko-Cantelli-Satz strebt die empirische Verteilung gleichmäßig gegen die Verteilungsfunktion von X (also unter H0 gegen F0). Unter H1 sollte man also größere Werte bekommen als unter H0. Die Teststatistik ist unabhängig von der hypothetischen Verteilung F0. Ist der Wert der Teststatistik größer als der entsprechende tabellierte kritische Wert, so wird die Nullhypothese verworfen.

Vorgehensweise beim Einstichprobenproblem (Anpassungstest)

Von einer Zufallsvariablen X liegen n Beobachtungen xi (i = 1,...,n) vor. Von diesen Beobachtungen wird die relative Summenfunktion (Summenhäufigkeit, empirische Verteilungsfunktion) S(xi) ermittelt. Diese empirische Verteilung wird nun mit der entsprechenden hypothetischen Verteilung der Grundgesamtheit verglichen: Es wird der Wert der Wahrscheinlichkeitsverteilung an der Stelle xi bestimmt: F0(xi). Wenn X tatsächlich dieser Verteilung gehorcht, müssten die beobachtete Häufigkeit S(xi) und die erwartete Häufigkeit F0(xi) in etwa gleich sein.

Es wird also für jedes i die absolute Differenz

 d_{oi} = |S(x_i)-F_0(x_i)|~

und auch

 d_{ui} = |S(x_{i-1})-F_0(x_i)|~

berechnet. Es wird sodann die absolut größte Differenz dmax aus allen Differenzen ermittelt. Wenn dmax also einen kritischen Wert dα übersteigt, wird die Hypothese bei einem Signifikanzniveau α abgelehnt.

Bis n=40 liegen die kritischen Werte tabelliert vor [1]. Für größere n werden sie näherungsweise mit Hilfe einer einfachen Formel bestimmt: \text{d}_\alpha=\frac{\sqrt{\ln\left(\frac{2}{\alpha}\right)}}{\sqrt{2 n}}

Hier die Konfidenz-Intervalle bei dmax (für n>40):

Signifikanzniveau α dmax
20 % 1,07/√n
10 % 1,22/√n
5 % 1.36/√n
2 % 1,52/√n
1 % 1,63/√n

Anwendungsbeispiele

  • Der Kolmogorow-Smirnow-Test kann zum Testen von Zufallszahlen genutzt werden, beispielsweise um zu prüfen, ob die Zufallszahlen einer bestimmten Verteilung (z. B. Gleichverteilung) folgen.
  • Einige (parametrische) statistische Verfahren setzen voraus, dass die untersuchten Variablen in der Grundgesamtheit normalverteilt sind. Der KSA-Test kann genutzt werden, um zu testen, ob diese Annahme verworfen werden muss oder (unter Beachtung des \beta\,-Fehlers) beibehalten werden kann.

Zahlenbeispiel

Vergleich von empirischer und theoretischer Verteilung des Zahlenbeispiels: Links ein Histogramm mit Normalverteilungskurve, rechts die theoretische und die empirische Verteilungsfunktion

In einem Unternehmen, das hochwertige Parfüms herstellt, wurde im Rahmen der Qualitätssicherung an einer Abfüllanlage die abgefüllte Menge für n=8 Flakons gemessen. Es ist das Merkmal x: abgefüllte Menge in ml.

Es soll geprüft werden, ob noch die bekannten Parameter der Verteilung von X gelten.

Zunächst soll bei einem Signifikanzniveau α=0,05 getestet werden, ob das Merkmal X in der Grundgesamtheit überhaupt normalverteilt mit den bekannten Parametern μ = 11 und σ2 = σ = 1 ist, also

H0:F(x) = F0(x) = Φ(x | 11;1)

mit Φ als Normalverteilungssymbol. Es ergibt sich folgende Tabelle:

i xi S(xi) Fo(xi) S(xi-1)-Fo(xi) S(xi)-Fo(xi)
1 9,41 0,125 0,056 -0,056 0,069
2 9,92 0,250 0,140 -0,015 0,110
3 11,55 0,375 0,709 -0,459 -0,334
4 11,60 0,500 0,726 -0,351 -0,226
5 11,73 0,625 0,767 -0,267 -0,142
6 12,00 0,750 0,841 -0,216 -0,091
7 12,06 0,875 0,855 -0,105 0,020
8 13,02 1,000 0,978 -0,103 0,022

Hier bezeichnen xi die i-te Beobachtung, S(xi) den Wert der Summenfunktion der i-ten Beobachtung und F0(xi) den Wert der Normalverteilungsfunktion an der Stelle xi mit den genannten Parametern. Die nächsten Spalten geben die oben angeführten Differenzen an. Der kritische Wert, der bei n = 8 und α = 0,05 zur Ablehnung führte, wäre der Betrag 0,457 [1]. Die größte absolute Abweichung in der Tabelle ist 0,459 in der 3. Zeile. Dieser Wert ist größer als der kritische Wert, daher wird die Hypothese gerade noch abgelehnt. Es ist also zu vermuten, dass die Verteilungshypothese falsch ist. Das kann bedeuten, dass die abgefüllte Menge nicht mehr normalverteilt ist, dass sich die durchschnittliche Abfüllmenge μ verschoben hat oder auch, dass sich die Varianz σ2 der Abfüllmenge verändert hat.

Eigenschaften des KS-Tests

Beim Einstichprobenproblem ist der KS-Test im Gegensatz etwa zum χ²-Test auch für kleine Stichproben geeignet.[2]

Der Kolmogorow-Smirnow-Test ist als nichtparametrischer Test sehr stabil und unanfällig. Ursprünglich wurde der Test für stetig verteilte metrische Merkmale entwickelt; er kann aber auch für diskrete und sogar rangskalierte Merkmale verwendet werden. In diesen Fällen ist der Test etwas weniger trennscharf, d.h. die Nullhypothese wird seltener abgelehnt als im stetigen Fall.

Ein großer Vorteil besteht darin, dass die zugrundeliegende Zufallsvariable keiner Normalverteilung folgen muss. Die Verteilung der Prüfgröße dn ist für alle (stetigen) Verteilungen identisch. Dies macht den Test vielseitig einsetzbar, bedingt aber auch seinen Nachteil, denn der KS-Test ist nicht sehr genau. Der Lilliefors-Test ist eine Anpassung des Kolmogorow-Smirnow-Tests für die Testung auf Normalverteilung. Mögliche Alternativen zum KS-Test sind der Cramér-von-Mises-Test, der für beide Anwendungsfälle geeignet ist, sowie der Anderson-Darling-Test für den Vergleich einer Stichprobe mit einer hypothetischen Wahrscheinlichkeitsverteilung.

Weblinks

Einzelnachweise

  1. a b Tabelle der kritischen Werte
  2. Jürgen Janssen, Wilfried Laatz: Statistische Datenanalyse mit SPSS für Windows. 6. Auflage. Springer, 2007, S. 569.

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Kolmogorow-Smirnow-Anpassungstest — Der Kolmogorow Smirnow Anpassungstest, KS Test oder KSA Test (nach Andrei Nikolajewitsch Kolmogorow und Nikolaj Wassiljewitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen. Das kann ein Vergleich… …   Deutsch Wikipedia

  • Kolmogoroff-Smirnow-Test — Der Kolmogorow Smirnow Anpassungstest, KS Test oder KSA Test (nach Andrei Nikolajewitsch Kolmogorow und Nikolaj Wassiljewitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen. Das kann ein Vergleich… …   Deutsch Wikipedia

  • Kolmogorow — Andrei Nikolajewitsch Kolmogorow Andrei Nikolajewitsch Kolmogorow (russisch Андрей Николаевич Колмогоров, wiss. Transliteration Andrej Nikolaevič Kolmogorov; * 12.jul./ 25. April 1903 …   Deutsch Wikipedia

  • Anderson-Darling-Test — Der Anderson Darling Test beziehungsweise Anderson Darling Anpassungstest ist ein statistischer Test, mit dem festgestellt werden kann, ob die Häufigkeitsverteilung der Daten einer Stichprobe von einer vorgegebenen hypothetischen… …   Deutsch Wikipedia

  • KS-Test — Der Kolmogorow Smirnow Anpassungstest, KS Test oder KSA Test (nach Andrei Nikolajewitsch Kolmogorow und Nikolaj Wassiljewitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen. Das kann ein Vergleich… …   Deutsch Wikipedia

  • Kolmogoroff-Smirnoff-Test — Der Kolmogorow Smirnow Anpassungstest, KS Test oder KSA Test (nach Andrei Nikolajewitsch Kolmogorow und Nikolaj Wassiljewitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen. Das kann ein Vergleich… …   Deutsch Wikipedia

  • Kolmogorov-Smirnov-Test — Der Kolmogorow Smirnow Anpassungstest, KS Test oder KSA Test (nach Andrei Nikolajewitsch Kolmogorow und Nikolaj Wassiljewitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen. Das kann ein Vergleich… …   Deutsch Wikipedia

  • Ks-test — Der Kolmogorow Smirnow Anpassungstest, KS Test oder KSA Test (nach Andrei Nikolajewitsch Kolmogorow und Nikolaj Wassiljewitsch Smirnow) ist ein statistischer Test auf Übereinstimmung zweier Wahrscheinlichkeitsverteilungen. Das kann ein Vergleich… …   Deutsch Wikipedia

  • Parametrischer Test — Die Artikel Statistischer Test und Signifikanztest überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese Überschneidungen. Bitte entferne diesen… …   Deutsch Wikipedia

  • Lilliefors-Test — Der Lilliefors Test beziehungsweise Kolmogorow Smirnow Lilliefors Test ist ein statistischer Test, mit dem die Häufigkeitsverteilung der Daten einer Stichprobe auf Abweichungen von der Normalverteilung untersucht werden kann. Er basiert auf einer …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”