Anfangswertaufgabe

Als Anfangswertproblem (AWP) (manchmal auch als Anfangswertaufgabe (AWA) oder Cauchy-Problem genannt) bezeichnet man in der Analysis eine wichtige Klasse von Differentialgleichungen, bei denen aus vorgegebenen Anfangsdaten, nämlich dem Anfangswert y0 und einem Zeitpunkt t_0\in\mathbb{R}, die Lösung y einer gegebenen Differentialgleichung berechnet werden soll, die zusätzlich y(t0) = y0 genügt. Genauer heißt

y'(t) = f(t, y(t)),\quad y(t_0) = y_0

Anfangswertproblem 1. Ordnung.

Inhaltsverzeichnis

Allgemeine Definition

Gegeben seien k\in\N und eine Funktion f:D\rightarrow\R^n. Der Definitionsbereich D von f sei hierbei eine Teilmenge von I \times \R^{n\times k}, worin I \subset \mathbb{R} ein Intervall bezeichnet, welches t0 umfasst. Dann heißt

\begin{cases}
  y^{(k)}=f(t,y(t),y'(t),\ldots,y^{(k-1)}(t))& \\
  y^{(i)}(t_0)=y_i,\ i=0,\ldots, k-1&
\end{cases}

ein Anfangswertproblem k-ter Ordnung. Jedes Anfangswertproblem k-ter Ordnung lässt sich umschreiben in ein Anfangswertproblem 1. Ordnung.

Ein spezielles Anfangswertproblem ist das Riemann-Problem, bei dem die Anfangsdaten konstant sind bis auf eine Unstetigkeitsstelle.

Anfangswertprobleme treten zum Beispiel in den Naturwissenschaften auf, wenn für natürliche Prozesse ein mathematisches Modell gesucht wird.

Wichtige Sätze, die die Lösbarkeit von Anfangswertproblemen für gewöhnliche Differentialgleichungen betreffen, sind der (lokale) Existenzsatz von Peano und der Existenz- und Eindeutigkeitssatz von Picard-Lindelöf. Ein Hilfsmittel ist die grönwallsche Ungleichung.

Beispiel

Das Anfangswertproblem

y'(t) = 2\cdot{\rm sgn}(y(t))\cdot\sqrt{|y(t)|}\ ,\ y(0) = 0\ ,

welches zu

f(t,x) := 2\cdot{\rm sgn}(x)\cdot\sqrt{|x|}

korrespondiert, hat unendlich viele Lösungen, nämlich neben der trivialen Lösung

y(t) \equiv 0

auch noch für jedes c \geq 0 die Lösungen

y(t) = \left\{\begin{array}{ll}0\ ,&\textrm{falls}\ t < c\ ,\\(t-c)^2\ ,&\textrm{falls}\ t \geq c\ ,\\\end{array}\right.

sowie

y(t) = \left\{\begin{array}{ll}0\ ,&\textrm{falls}\ t < c\ ,\\-(t-c)^2\ ,&\textrm{falls}\ t \geq c\ .\\\end{array}\right.

Damit Anfangswertprobleme eindeutige Lösungen besitzen, sind Zusatzeigenschaften (an f) nachzuweisen. Ein hinreichendes Kriterium hierfür liefert der Satz von Picard-Lindelöf, welches in diesem Beispiel jedoch verletzt ist.

Abstraktes Cauchy-Problem

Seien X ein Banachraum und A: D(A) \subset X \rightarrow X ein linearer oder nichtlinearer Operator. Die Fragestellung, ob bei gegebenem T > 0, u_0 \in X und f: (0, T) \rightarrow X eine differenzierbare Funktion u:[0,T)\rightarrow X mit u(t) \in D(A) für alle T > t > 0 existiert, die das Anfangswertproblem

\begin{matrix} u'(t)+A(u(t))&=&f(t), & \quad T>t>0\\ u(0)&=&u_0& \end{matrix}

erfüllt, bezeichnet man als abstraktes Cauchy-Problem. Zu ihrer Lösbarkeit benötigt man die Theorie der stark stetigen Halbgruppen bzw. der analytischen Halbgruppen. Zu den verschiedenen Anfangsbedingungen und Operatoren gibt es verschiedene Arten des Lösungsbegriffes, im linearen distributionelle Lösungen, im nichtlinearen die integrale Lösung. Mit klassisch differenzierbaren, beziehungsweise fast überall differenzierbaren Lösungen beschäftigt sich die nachgelagerte Regularitätstheorie.

Numerische Lösung

Zur numerischen Lösung von Anfangswertproblemen werden Einschritt- oder Mehrschrittverfahren eingesetzt. Dabei wird die Differentialgleichung mittels einer Diskretisierung approximiert.

Literatur

  • Wolfgang Walter: Gewöhnliche Differentialgleichungen: Eine Einführung, 7. Auflage, Springer, 2000, ISBN 3540676422
  • Isao Miyadera, Choong Yun Cho: Nonlinear Semigroups
  • Amnon Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • AWA — Mit Awa kann gemeint sein: die ehemalige japanische Provinz Awa in Kantō, heute in der Präfektur Chiba, siehe Provinz Awa (Chiba) die ehemalige japanische Provinz Awa auf Shikoku, heute in der Präfektur Tokushima, siehe Provinz Awa (Tokushima)… …   Deutsch Wikipedia

  • Anfangswertproblem — Als Anfangswertproblem (abgekürtzt AWP), manchmal auch Anfangswertaufgabe (abgekürtzt AWA) oder Cauchy Problem genannt, bezeichnet man in der Analysis eine wichtige Klasse von Differentialgleichungen. In diesem Artikel wird das Anfangswertproblem …   Deutsch Wikipedia

  • Awa — Mit Awa kann gemeint sein: die ehemalige japanische Provinz Awa in Kantō, heute in der Präfektur Chiba, siehe Provinz Awa (Chiba) die ehemalige japanische Provinz Awa auf Shikoku, heute in der Präfektur Tokushima, siehe Provinz Awa (Tokushima)… …   Deutsch Wikipedia

  • Cauchy-Problem — Als Anfangswertproblem (AWP) (manchmal auch als Anfangswertaufgabe (AWA) oder Cauchy Problem genannt) bezeichnet man in der Analysis eine wichtige Klasse von Differentialgleichungen, bei denen aus vorgegebenen Anfangsdaten, nämlich dem… …   Deutsch Wikipedia

  • Cauchyproblem — Als Anfangswertproblem (AWP) (manchmal auch als Anfangswertaufgabe (AWA) oder Cauchy Problem genannt) bezeichnet man in der Analysis eine wichtige Klasse von Differentialgleichungen, bei denen aus vorgegebenen Anfangsdaten, nämlich dem… …   Deutsch Wikipedia

  • Konsistenzordnung — Die Konsistenzordnung p (auch Fehlerordnung) ist ein Begriff der numerischen Mathematik und bezeichnet ein Gütekriterium für numerische Verfahren zur approximativen Lösung gewöhnlicher Differentialgleichungen. Siehe auch Konsistenz (Mathematik).… …   Deutsch Wikipedia

  • WxMaxima — Maxima Screenshot von Maxima in einer Shel …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”