Antimontrihydrid
Strukturformel
Allgemeines
Name Stiban
Andere Namen
  • Antimonhydrid
  • Antimontrihydrid
  • Antimonwasserstoff
  • Monostiban
  • Stibin
Summenformel SbH3
CAS-Nummer 7803-52-3
Kurzbeschreibung farbloses Gas
Eigenschaften
Molare Masse 124,77 g·mol−1
Aggregatzustand

gasförmig

Dichte

2,158 g·cm−3 (flüssig, −17 °C)[1]

Schmelzpunkt

−88,5 °C[1]

Siedepunkt

−17 °C[1]

Dampfdruck

82,8 kPa [2] (−23 °C)

Löslichkeit

wenig löslich in Wasser, besser in Alkohol und Kohlenstoffdisulfid

Dipolmoment 0,4·10−30 C·m [3]
Sicherheitshinweise
Gefahrstoffkennzeichnung }[1]
Sehr giftig Hochentzündlich
Sehr giftig Hoch-
entzündlich
(T+) (F+)
R- und S-Sätze R: 12-26
S: (1)-9-16-33-36-45
Thermodynamische Eigenschaften
ΔHf0

145 kJ/mol [3]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Stiban (Monostiban oder Antimonwasserstoff, veraltet auch als Stibin bezeichnet), chemische Formel SbH3, ist ein farbloses, übelriechendes und äußerst giftiges Gas, das bei der Auflösung von salzartigen Antimoniden in Wasser und verdünnten Säuren entsteht.

Inhaltsverzeichnis

Gewinnung und Darstellung

Stiban wird aus löslichen Antimonverbindungen und naszierendem Wasserstoff gewonnen. So entsteht bei der Reaktion von Antimon(III)-hydroxid mit naszierendem Wasserstoff Stiban und Wasser.

\mathrm{Sb(OH)_3 + 6 H \to SbH_3 + 3 H_2O}

Eine andere Möglichkeit besteht darin, Magnesiumantimonid in einem Überschuss verdünnter Salzsäure zu lösen.

\mathrm{Mg_3Sb_2 + 6 HCl \to 2 SbH_3 + 3 MgCl}

Beide Methoden bringen jedoch den Nachteil mit sich, dass das entstehende Gas hauptsächlich aus Wasserstoff besteht. Durch abkühlen des Gases auf unter −17 °C kann dieser jedoch abgetrennt werden, da Stiban bei dieser Temperatur kondensiert.

Eine Methode, die diesen Nachteil nicht mit sich bringt, ist die Hydrierung von Antimon(III)-chlorid mittels Natriumborhydrid in salzsaurer Lösung.

\mathrm{SbCl_3 + 3 NaBH_4 \to SbH_3 + 3 NaCl + 3 BH_3}

Eigenschaften

Physikalische Eigenschaften

Der Schmelzpunkt liegt bei −88 °C, der Siedepunkt bei −17 °C. Die Gibbs-Energie \Delta_f G^0_g beträgt 148 kJ/mol, die Standardentropie S^0_g 233 J/(mol·K) und die Wärmekapazität C^0_{pg} 41 J/(mol·K).[3] Stiban ist ein pyramidales Molekül mit den drei Wasserstoff-Atomen an der dreieckigen Pyramidenbasis und dem Antimon-Atom an der Pyramidenspitze. Die Winkel H-Sb-H betragen 91.7°, der Abstand Sb-H beträgt 1.707 Å.

Chemische Eigenschaften

Die chemischen Eigenschaften des Stibans ähneln dem Arsenwasserstoff. Typisch für ein Schwermetallhydrid ist Stiban instabiler als die jeweiligen Elemente. Bei Raumtemperatur zerfällt das Gas langsam, bei 200 °C jedoch sehr schnell. Dieser Prozess verläuft autokatalytisch und unter Umständen explosiv.

\mathrm{2 SbH_3 \to 3 H_2 + 2 Sb}

Mit starken Brønsted-Basen lässt sich Stiban unter Bildung von Antimoniden deprotonieren.

Verwendung

Stiban wird in der Halbleiterindustrie zur n-Dotierung von Silicium verwendet.

Sicherheitshinweise

Aufgrund der hohen Toxizität und der leichten Entflammbarkeit ist beim Umgang mit Stiban Vorsicht geboten. Es sollte mit Schutzkleidung und Schutzmaske, fernab von offenen Flammen und Funkenbildung gehandhabt werden.

Einatmen von Stiban kann zu Husten, Übelkeit, Hals- und Kopfschmerzen, Mattigkeit, blutigem Urin und zu Atemnot führen. Es können Schädigungen des Blutes, der Leber, der Nieren und des Zentralnervensystems auftreten, die zum Tod führen können.

Aufgrund der Instabilität sollte Stiban wenn möglich nicht gelagert werden.

Nachweis

Stiban lässt sich mit der Marsh'schen Probe nachweisen. Hierzu wird Stiban, vermischt mit Wasserstoff, durch ein dünnes, zu einer Spitze ausgezogenem Glasrohr, geleitet und am Ende abgefackelt. Dabei wird das Glasrohr mit einem Bunsenbrenner erhitzt, wobei sich Anwesenheit von Stiban im Glasrohr ein Antimonspiegel bildet. Der Antimonspiegel unterscheidet sich von einem Arsenspiegel durch seine dunklere Farbe, außerdem ist er in Natriumhypochloritlösung unlöslich und färbt sich mit Polysulfidlösung orange.

Literatur

  • A.F. Holleman, E. Wiberg: Lehrbuch der Anorganischen Chemie. 101. Auflage. Walter de Gruyter, Berlin/New York 1995. ISBN 3-11-012641-9.
  • G. Jander, E. Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie. 15. Auflage. S. Hirzel Verlag, Stuttgart/Leipzig 2002. ISBN 3-7776-1146-8.
  • Autorenteam: RÖMPP CD 2006. Georg Thieme Verlag, Stuttgart/New York 2006. ISBN 3-131-43321-3.

Quellen

  1. a b c d Eintrag zu Stiban in der GESTIS-Stoffdatenbank des BGIA, abgerufen am 14.9.2007 (JavaScript erforderlich)
  2. Berka L., Briggs T., Millard M., Jolly W. (1960): J. Inorg. Nucl. Chem.. 14, S. 190–194
  3. a b c G.H. Aylward, T.J.V. Findlay: Datensammlung Chemie in SI-Einheiten. 3. Auflage. Wiley-VCH, 1999, ISBN 3-527-29468-6.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Antimonhydrid — Strukturformel Allgemeines Name Stiban Andere Namen Antimonhydrid Antimontrihydrid Antimonwasserstoff Monostiban Stibin …   Deutsch Wikipedia

  • Antimonwasserstoff — Strukturformel Allgemeines Name Stiban Andere Namen Antimonhydrid Antimontrihydrid Antimonwasserstoff Monostiban Stibin …   Deutsch Wikipedia

  • Monostiban — Strukturformel Allgemeines Name Stiban Andere Namen Antimonhydrid Antimontrihydrid Antimonwasserstoff Monostiban Stibin …   Deutsch Wikipedia

  • SbH3 — Strukturformel Allgemeines Name Stiban Andere Namen Antimonhydrid Antimontrihydrid Antimonwasserstoff Monostiban Stibin …   Deutsch Wikipedia

  • Stiban — Strukturformel Allgemeines Name Stiban Andere Namen Antimonhydrid …   Deutsch Wikipedia

  • Stibin — Strukturformel Allgemeines Name Stiban Andere Namen Antimonhydrid Antimontrihydrid Antimonwasserstoff Monostiban Stibin …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”