Antiton

In der Mathematik heißt eine Funktion oder Folge, die nur größer wird oder konstant ist (und niemals fällt), monoton steigend (oder monoton wachsend bzw. isoton). Entsprechend heißt eine Funktion oder Folge monoton fallend (antiton), wenn sie nur kleiner wird oder konstant bleibt. Ändern sich die Werte der Funktion oder die Glieder der Folge nicht, heißt sie konstant.

Streng monoton steigend (bzw. streng monoton fallend) sind Funktionen oder Folgen, die nur größer (kleiner) werden, aber nicht konstant sind.

Inhaltsverzeichnis

Beispiele

Die Funktion y=x3 ist überall streng monoton steigend.

Die Folge

1,3,5,7,9,11,...

ist streng monoton steigend.

Die Folge

1,3,3,5,6,8,8,9,1000,1200

ist monoton steigend, jedoch nicht streng monoton steigend (3 und 8 kommen doppelt vor).

Die Folge

2,2,2,2,2,2,2,...

ist konstant.

Die Funktion

y = x3

ist über den gesamten Wertebereich streng monoton steigend. Bei x=0 hat sie zwar eine Steigung von 0, jedoch nur an diesem einen Punkt.

Die Funktion

y = x2

ist im Bereich von minus unendlich bis Null (einschließlich) (x \leq 0) streng monoton fallend. Im Bereich von Null (einschließlich) bis plus unendlich (x \geq 0) ist sie streng monoton steigend.

Definitionen

Sei \begin{matrix}f: A \rightarrow B\end{matrix} eine Funktion. Auf \begin{matrix} A \end{matrix} und \begin{matrix} B \end{matrix} sei jeweils eine Ordnungsrelation \begin{matrix} \leq \end{matrix} definiert. Dann heißt die Funktion \begin{matrix} f \end{matrix} monoton steigend, wenn:

für alle  a,b \in A: a < b \Rightarrow f(a) \leq f(b).


Gilt anstelle von f(a) \leq f(b) sogar \begin{matrix}f(a) < f(b) \end{matrix}, so heißt die Funktion \begin{matrix} f \end{matrix} streng monoton steigend. Entsprechend gilt natürlich für \begin{matrix} \geq \end{matrix} bzw. \begin{matrix} > \end{matrix} monoton fallend bzw. streng monoton fallend.


Eine Folge (a_{n})_{n \in \mathbb{N}} heißt monoton steigend, wenn für alle n \in \mathbb{N} gilt: a_{n+1} \geq a_n.

Eine Folge (a_{n})_{n \in \mathbb{N}} heißt streng monoton steigend, wenn für alle n \in \mathbb{N} gilt: \begin{matrix}a_{n+1} > a_n\end{matrix}.

Weitere Eigenschaften

Für eine reelle monotone Funktion f gilt:

Monotonie differenzierbarer reeller Funktionen

  • Eine stetig differenzierbare Funktion auf einem Intervall ist genau dann monoton wachsend (bzw. monoton fallend), wenn die Ableitung nirgendwo negativ (bzw. nirgendwo positiv) ist.
  • Eine stetig differenzierbare Funktion auf einem Intervall ist genau dann streng monoton wachsend (bzw. streng monoton fallend), wenn die Ableitung
    • nirgendwo negativ (bzw. nirgendwo positiv) und
    • auf keinem echtem Teilintervall konstant gleich null ist (wobei ein echtes Intervall ein Intervall mit mehr als einem Element ist).

Umkehrfunktion

Sei I\subset\mathbb{R} ein Intervall und f:I\rightarrow\mathbb{R} sei streng monoton wachsend/fallend und stetig. Dann ist

  • die Bildmenge I':= f\left(I\right) ein Intervall
  • f:I\rightarrow I' bijektiv
  • die Umkehrfunktion f^{-1}:I'\rightarrow I streng monoton wachsend/fallend und stetig
  • f^{-1}\left(a\right)<b\Leftrightarrow a<f\left(b\right) wenn wachsend und
  • f^{-1}\left(a\right)<b\Leftrightarrow a>f\left(b\right) wenn fallend

Monotoniegesetze

Für \left\{ a,\,b,\,c \right\} \in \mathbb{R} gilt:

  1. \left( a \le b \right) \Rightarrow 
\left[ \left( a + c \right) \le \left( b + c \right) \right]
  2. \left( a \le b \right) \Rightarrow \left\{
\begin{matrix}{a\,c \le b\,c} & \text{ wenn } & {c \ge 0} \\
{a\,c \ge b\,c} & \text{ wenn } & {c \le 0} \end{matrix} \right.

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • antiton — ANTITÓN s.n. Emulsie constituită din ulei de in, gumă arabică şi acid fosforic, folosită în tipografie pentru combaterea fenomenului de tonare. – Anti + ton. Trimis de ana zecheru, 13.09.2007. Sursa: DEX 98  antitón s. n. Trimis de siveco, 10.08 …   Dicționar Român

  • Galois-Verbindung — Die Galoisverbindung ist nach Évariste Galois benannt. Man versteht darunter den folgenden Sachverhalt: Definition: Eine Galoisverbindung zwischen zwei partiell geordneten Mengen ist ein Paar (σ,τ) von Abbildungen , falls σ und τ antiton sind und …   Deutsch Wikipedia

  • David C. Johnson — For other people named David Johnson, see David Johnson (disambiguation). David C. Johnson (b. 30 January 1940 in Batavia, New York), is an American composer, flautist, and performer of live electronic music. David Johnson studied, among other… …   Wikipedia

  • Antitonie — In der Mathematik heißt eine Funktion oder Folge, die nur größer wird oder konstant ist (und niemals fällt), monoton steigend (oder monoton wachsend bzw. isoton). Entsprechend heißt eine Funktion oder Folge monoton fallend (antiton), wenn sie nur …   Deutsch Wikipedia

  • David Johnson (Komponist) — David C. Johnson, (* 30. Januar 1940 in Batavia, New York), ist ein seit 1964 in Europa lebender amerikanischer Komponist, Flötist, Performer von Live Elektronischer Musik, Lehrer elektronischer Musik und Leiter elektronischer Studios.… …   Deutsch Wikipedia

  • Galoisverbindung — Die Galoisverbindung ist nach Évariste Galois benannt. Man versteht darunter den folgenden Sachverhalt: Definition: Eine Galoisverbindung zwischen zwei partiell geordneten Mengen ist ein Paar (σ,τ) von Abbildungen , falls σ und τ antiton sind und …   Deutsch Wikipedia

  • Monoton fallend — In der Mathematik heißt eine Funktion oder Folge, die nur größer wird oder konstant ist (und niemals fällt), monoton steigend (oder monoton wachsend bzw. isoton). Entsprechend heißt eine Funktion oder Folge monoton fallend (antiton), wenn sie nur …   Deutsch Wikipedia

  • Monotone Funktion — In der Mathematik heißt eine Funktion oder Folge, die nur größer wird oder konstant ist (und niemals fällt), monoton steigend (oder monoton wachsend bzw. isoton). Entsprechend heißt eine Funktion oder Folge monoton fallend (antiton), wenn sie nur …   Deutsch Wikipedia

  • Monotonie (Mathematik) — In der Mathematik heißt eine Funktion oder Folge, die nur größer wird oder konstant ist (und niemals fällt), monoton steigend (oder monoton wachsend bzw. isoton). Entsprechend heißt eine Funktion oder Folge monoton fallend (antiton), wenn sie nur …   Deutsch Wikipedia

  • Monotoniekriterium — In der Mathematik heißt eine Funktion oder Folge, die nur größer wird oder konstant ist (und niemals fällt), monoton steigend (oder monoton wachsend bzw. isoton). Entsprechend heißt eine Funktion oder Folge monoton fallend (antiton), wenn sie nur …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”