Arithmetische Differenz

Als arithmetische Differenz wird manchmal eine besondere Form der Differenz bezeichnet, die verwendet wird, wenn keine negativen Differenzen gültig sein sollen. Man beachte, dass weder dieser Begriff noch die unten angegebene Notation in der Mathematik allgemein verbreitet sind.

Diese Funktion ist insbesondere für die Axiomatisierung der natürlichen Zahlen sinnvoll. Für zwei natürliche Zahlen m und n ist die arithmetische Differenz folgendermaßen definiert:

m\,\dot-\,n=\begin{cases}m-n&\mathrm{falls}\ m\geq n\\ 0&\mathrm{sonst}\end{cases}

Anstelle des üblichen Minuszeichens wird wie hier gelegentlich ein Minuszeichen mit obenstehendem Punkt verwendet.

Siehe auch Arithmetische Folge.


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Arithmetische Reihe — Arithmetische Reihen sind spezielle mathematische Reihen. Eine arithmetische Reihe ist die Folge, deren Glieder die Summe der ersten n Glieder (den Partialsummen) einer arithmetischen Folge sind. Arithmetische Reihen sind im allgemeinen divergent …   Deutsch Wikipedia

  • Arithmetische Reihen — sind spezielle mathematische Reihen. Eine arithmetische Reihe ist die Folge, deren Glieder die Summe der ersten n Glieder (den Partialsummen) einer arithmetischen Folge sind. Arithmetische Reihen sind im allgemeinen divergent. Es interessieren… …   Deutsch Wikipedia

  • Arithmetische Folge — Eine arithmetische Folge oder arithmetische Progression ist eine regelmäßige mathematische Zahlenfolge mit der Eigenschaft, dass die Differenz zweier benachbarter Folgenglieder konstant ist. Also gilt: (rekursive Formel). Das i te Glied ai einer… …   Deutsch Wikipedia

  • Arithmetische Progression — Eine arithmetische Folge oder arithmetische Progression ist eine regelmäßige mathematische Zahlenfolge mit der Eigenschaft, dass die Differenz zweier benachbarter Folgenglieder konstant ist. Also ai + 1 = ai + d (rekursive Formel) Das i te Glied… …   Deutsch Wikipedia

  • Primitiv-rekursive Funktion — Primitiv rekursive Funktionen sind totale Funktionen, die aus einfachen Grundfunktionen (konstante 0 Funktion, Projektionen auf ein Argument und Nachfolgefunktion) durch Komposition und (primitive) Rekursion gebildet werden können. Der Begriff… …   Deutsch Wikipedia

  • Verfeinerung — Unter Verfeinerung versteht man in der Informatik ein Verfahren, bei dem aus einer abstrakten Beschreibung (z. B. Registermaschine, formale Spezifikation mittels Z Notation) eine konkretere Beschreibung abgeleitet wird. Eine Verfeinerung… …   Deutsch Wikipedia

  • Explizite Zuordnungsvorschrift — Als Folge wird in der Mathematik eine Auflistung (Familie) von endlich oder unendlich vielen fortlaufend nummerierten Objekten (beispielsweise Zahlen) bezeichnet. Dasselbe Objekt kann in einer Folge auch mehrfach auftreten. Das Objekt mit der… …   Deutsch Wikipedia

  • Folge (Mathematik) — Als Folge oder Sequenz wird in der Mathematik eine Auflistung (Familie) von endlich oder unendlich vielen fortlaufend nummerierten Objekten (beispielsweise Zahlen) bezeichnet. Dasselbe Objekt kann in einer Folge auch mehrfach auftreten. Das… …   Deutsch Wikipedia

  • Potenzfolge — Als Folge wird in der Mathematik eine Auflistung (Familie) von endlich oder unendlich vielen fortlaufend nummerierten Objekten (beispielsweise Zahlen) bezeichnet. Dasselbe Objekt kann in einer Folge auch mehrfach auftreten. Das Objekt mit der… …   Deutsch Wikipedia

  • Sequenz (Mathematik) — Als Folge wird in der Mathematik eine Auflistung (Familie) von endlich oder unendlich vielen fortlaufend nummerierten Objekten (beispielsweise Zahlen) bezeichnet. Dasselbe Objekt kann in einer Folge auch mehrfach auftreten. Das Objekt mit der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”