NExT

NExT
Stardust
Missionsverlauf
Start 7. 2. 1999
Kurskorrektur DSM-1 18. 1. – 22. 1. 2000
Größte Entfernung
von der Sonne
10. 2. 2000
1. Staubsammelphase 22. 2. – 1. 5. 2000
Standbymodus nach
Sonnensturm
Gravity Assist Manöver 15. 1. 2001
Solare Konjunktion
(kein Funkkontakt zwischen
Stardust und Bodenstation)
17. 12. – 31. 12. 2001
Kurskorrektur DSM-2 18. 1. 2002
2. Staubsammelphase 5. 8. – 9. 12. 2002
Vorbeiflug und Fotografieren
des Asteroiden Annefrank
2. 11. 2002
Solare Konjunktion
(kein Funkkontakt zwischen
Stardust und Bodenstation)
3. 4. – 18. 4. 2003
Kurskorrektur DSM-3 17. 6. 2003
Vorbeiflug Wild 2 2. 1. 2004
Kurskorrektur DSM-4 2. 2. 2004
Abkopplung Rückkehrkapsel 15. 1. 2006
Landung Rückkehrkapsel 15. 1. 2006
Stardust

Die Raumsonde Stardust (deutsch: Sternenstaub) ist eine Mission der NASA, die 1999 gestartet wurde. Ziel der Mission war das Einfangen von Partikeln aus der Gashülle (Koma) des Kometen Wild 2 sowie des interstellaren Staubs, die im Januar 2006 zur Erde zurückgebracht wurden. Für die Entwicklung und den Bau der Sonde standen im Rahmen des Discovery-Programms zur Erforschung des Sonnensystems 128,4 Millionen Dollar zur Verfügung, weitere 40 Millionen Dollar wurden für die Missionsdurchführung verwendet. Dazu kamen Kosten für die Trägerrakete.

Inhaltsverzeichnis

Missionsziele

Kometen sind in den äußeren Bereichen des Sonnensystems entstanden. In ihnen ist vermutlich auch heute noch die Materie enthalten, aus der die Planeten unseres Sonnensystems entstanden sind. Die Untersuchung von kometarer Materie erlaubt damit einen Blick in die Entstehungszeit unseres Sonnensystems. Aufgrund der Beschränkungen, die für eine Sondenmission gelten, bietet eine Rückkehrmission mit gesammelten Proben deutliche Vorteile gegenüber Untersuchungen vor Ort. Speziell erwartet man von den kometaren Stardustproben Antworten

  • über die mineralogische und chemische Zusammensetzung von Kometen auf Submikrometerskalen
  • inwieweit Kometen in ihrer Zusammensetzung Meteoriten oder interplanetarem Staub ähneln bzw. sich von ihnen unterscheiden
  • ob Wasser in Kometen ausschließlich in Eis gebunden ist, oder auch in hydratisierten Mineralien vorkommt
  • über Anomalien der Isotopenzusammensetzung
  • über die Natur von kohlenstoffhaltigem Material und ihren Zusammenhang mit Silikaten oder anderen Mineralien

1993 wurde durch Ulysses erstmals nachgewiesen, dass interstellarer Staub aus der Richtung des Skorpion durch das Sonnensystem hindurchströmt. Dies wurde durch die Galileo-Mission 1994 bestätigt, jedoch kann man aus astronomischen Beobachtungen nur sehr ungenaue Angaben über den Aufbau und die Zusammensetzung der Staubteilchen gewinnen: es handelt sich um kleine, weitgehend unstrukturierte Teilchen – aus den Messungen könnte man zum Beispiel nicht einmal ausschließen, dass es sich um Tonerpartikel von Laserdruckern handelt. Aus diesem Grund ist die zweite Zielrichtung der Mission die Sammlung von interstellarem Staub, um Antworten zu erhalten

  • über die chemische Zusammensetzung
  • über die Isotopenverhältnisse der wichtigen Elemente wie C, H, Mg, Si, O
  • über die mineralische und strukturelle Beschaffenheit
  • ob alle Teilchen Isotopenanomalien aufweisen
  • über die Silikate: haben sie eine glasige oder eine kristalline Struktur? Welches Si:O Verhältnis weisen sie auf?
  • ob Graphit-Partikel häufig genug sind, um die beobachtete 0,22 µm-Extinktion zu erklären
  • ob die Teilchen homogen aufgebaut sind, oder z. B. aus einem Silikatkern mit organischem Mantel bestehen
  • ob die Teilchen weitgehend identisch aufgebaut sind, oder ob es verschiedene Komponenten gibt
  • ob es Hinweise auf Veränderungsprozesse gibt, wie z. B. durch Sputtering, Kollisionen, Aggregation oder chemische Veränderungen

Aus dem Vergleich der Proben kann man sowohl Rückschlüsse auf mögliche Veränderungen der Zusammensetzung des heutigen interstellaren Mediums im Vergleich zur Entstehungszeit des Sonnensystems ziehen als auch Prozesse während der Entstehung des Sonnensystems identifizieren. Die bisherigen Modelle über die Zusammensetzung des interstellaren Staubs sind rein theoretischer Natur – die Stardust-Proben bieten die erste Möglichkeit eines Vergleichs mit der Wirklichkeit.

Missionbeschreibung

Asteroid Annefrank aus einer Entfernung von 3300 km
Stardust auf seiner Delta II 7426 Trägerrakete kurz vor dem Start

Die Sonde Stardust wurde am 7. Februar 1999 mit einer Trägerrakete des Typs Delta-II-7426 von Launch Complex 17 in Florida gestartet und in einen Sonnenorbit mit zweijähriger Umlaufzeit gebracht. Durch ein Gravity Assist-Manöver, bei dem sich die Sonde im Januar 2001 durch einen nahen Vorbeiflug an der Erde zusätzlichen Schwung holte, wurde der Orbit auf eine zweieinhalbjährige Umlaufzeit ausgeweitet. Mit diesem Schwung führte die Sonde zwei Sonnenumkreisungen durch, bevor sie bei der erneuten Begegnung mit der Erde im Januar 2006 die Rückkehrkapsel für den Wiedereintritt ausklinkte.

Durch diese Bahncharakteristik mussten zum einen, neben kleineren Kurskorrekturen, nur vier Bahnmanöver durchgeführt werden, so dass die Sonde mit 85 Kilogramm Treibstoff auskam. Zum anderen bestand dabei genügend Zeit, während der ersten beiden Sonnenumläufe ausreichende Mengen interstellaren Staubs zu sammeln.

Am 9. November 2000 geriet Stardust in den viertstärksten „Sonnensturm“, der seit Beginn der kontinuierlichen Beobachtungen im Jahre 1976 gemessen wurde. Der Sonnenwind war, verursacht durch eine starke Sonneneruption, 100.000-mal stärker als normal, wodurch die zwölf stärksten Signale der Navigationskamera, die zur Kursbestimmung herangezogen werden, ausschließlich auf Protonenstrahlung zurückzuführen waren. Daraufhin schaltete sich die Sonde automatisch in einen Standby-Modus, der die Sonde vor Schäden bewahrte. Nachdem der Sonnenwind sich am 11. November wieder auf normale Stärke reduziert hatte, erfolgte ein Reset der Navigationssysteme. Eine Überprüfung des Kamerasystems ergab, dass keine Schäden durch die harte Teilchenstrahlung entstanden waren. Auch die anderen Bordsysteme waren noch voll funktionsfähig.

Die Sonde Stardust hat diese Aufnahme in einer Entfernung von 500 km des Kometen Wild 2 gemacht. (NASA/JPL)

Während des zweiten Umlaufs erfolgte am 2. November 2002 ein enger Vorbeiflug am Asteroiden 5535 Annefrank in nur 3.300 Kilometer Entfernung. Die Annäherung an Annefrank diente im wesentlichen der Vorbereitung und dem Test aller Systeme für das eigentliche Missionsziel Wild 2.

Am 2. Januar 2004 flog Stardust schließlich in einer Entfernung von 240 km und mit einer Relativgeschwindigkeit von 6,1 km/s an dem Kometen Wild 2 vorbei. Dabei schoss die Sonde mehrere Aufnahmen des Kometen und sammelte Komamaterial ein.

Landung

Die Kapsel der Sonde kurz nach der Landung

Nach dem medienwirksamen Versagen des Landefallschirms bei Genesis hatte bei der NASA eine intensive Ursachenforschung begonnen, um einen ähnlichen Fehlschlag bei Stardust möglichst zu vermeiden. Nachdem die erfolgten Untersuchungen einen simplen Herstellungsfehler als Ursache identifizierten, welcher bei Stardust nicht vorhanden sein sollte, blickte die NASA zuversichtlich der planmäßigen Landung der Stardust-Kapsel entgegen.

Am 15. Januar 2006 um 5:57 Uhr UTC setzte Stardust die Landekapsel in einer Höhe von 111.000 km aus, die einige Stunden später mit einer Geschwindigkeit von 46.400 km/h (12,9 km/s) in die Erdatmosphäre eintauchte, um anschließend an einem Fallschirm hängend auf der Erdoberfläche aufzusetzen. Dabei war dies die höchste Geschwindigkeit, die jemals von einem künstlichen Objekt bei dem Eintritt in die Erdatmosphäre erreicht wurde. Die Muttersonde selbst feuerte kurz nach Abstoßen der Landekapsel ihr Triebwerk und schwenkte ab, um in einem Sonnenorbit zu verbleiben.

Die Landekapsel setzte am 15. Januar 2006 um 10:12 Uhr UTC (11:12 Uhr MEZ) auf dem Gelände einer Militärbasis in Utah auf. Die gelandete Kapsel wurde kurz darauf um 10:55 UTC (3:55 Uhr Ortszeit) von Hubschraubern gefunden, die mit Infrarotsensoren, Peil- und Navigationsgeräten in der stockfinsteren Nacht nach der durch die Abbremsung in der Atmosphäre noch heißen Kapsel suchten. Die genauen Landekoordinaten waren 40° 21.9' N und 113° 31.25' W.

Erweiterte Mission

Am 29. Januar 2006 wurde die Muttersonde in einen „Schlafmodus” überführt, in dem sie nun auf unbestimmte Zeit verbleiben soll. Dabei wurden lediglich einige notwendige Teilsysteme, wie die Solarpanels und die Empfangsantenne, nicht abgeschaltet, um eine potenzielle Aktivierung der Sonde zu einem späteren Zeitpunkt zu ermöglichen. Inzwischen hat die NASA bekannt gegeben, Stardust in Richtung des Kometen Tempel 1 zu lenken. Dieses Ziel kann die Sonde lediglich fotografieren und mit Hilfe ihrer Instrumente untersuchen. Diese erweiterte Mission wird unter der Bezeichnung NExT (New Exploration of Tempel 1) durchgeführt.[1]

Tempel 1 war im Juli 2005 das Ziel der Sonde Deep Impact. Damals kollidierte der Impaktor der Sonde mit dem Kometen und hinterließ einen etwa 20 m tiefen Krater auf seiner Oberfläche. Die zeitgleich am Kometen vorbeifliegende Deep-Impact-Muttersonde sollte unter anderem Aufnahmen des entstandenen Kraters erstellen, konnte diese Aufgabe jedoch nicht erfüllen, da der Krater von einer Wolke ausgetretenen Materials verhüllt wurde. Dies soll nun die Stardust-Muttersonde nachholen. Dazu nahm sie am 14. Januar 2009 bei einem Fly-By-Manöver mit 9157 km minimaler Höhe um die Erde noch einmal Schwung. Der Vorbeiflug an Tempel 1 soll im Februar 2011 erfolgen.[2]

Ergebnisse

Nahaufnahme der Einschlagsstelle eines Staubpartikels

Schon nach einer visuellen Sichtung des Aerogels war klar, dass die Mission erfolgreich war. Es waren im ganzen 45 Einschläge mit bloßem Auge sichtbar. Insgesamt fand man über 150 Partikel, die größer als 10 Mikrometer waren. Forscher hatten nur mit einem solchen Teilchen gerechnet. Nachdem die großen Partikel aus den Aerogels entfernt wurden, begann die systematische Auswertung. Dazu wurden die Aerogels in dünne Scheiben geschnitten und mit Digitalkameras fotografiert und ausgewertet.

Ein Kometenpartikel (Durchmesser: ca. 2 Mikrometer)

Ende März begann man mit der Suche nach interstellaren Staubteilchen. Diese stammen nicht vom Kometen, sondern aus den Tiefen des Weltalls. Man erhofft sich, etwa 45 solcher Teilchen zu finden. Um diese aus der Fülle der Kometenpartikel zu finden, werden die ca. 1,5 Millionen Bilder ab Anfang August 2006 auf einer Webseite der Universität von Berkeley ausgestellt, wo jeder Internetnutzer durch das Stardust@home-Programm bei der Suche helfen kann.

Die ersten Ergebnisse aus den Analysen der Partikel sind auf jeden Fall sensationell. Sie zeigten Spuren von organischen Mittel, einschließlich zwei, die biologisch verwendbaren Stickstoff enthalten. Es gab auch Spuren von großer Hitze. Das ist in Übereinstimmung mit Modellen für das Mischen des Materials von den heißen und kalten Regionen des Solarsystems[1].

Technik

Stardust bei den Startvorbereitungen

Die Sonde wurde von Lockheed Martin Astronautics gebaut und basiert auf dem Entwurf des SpaceProbe deep space bus. Für Kurskorrekturen steht ein einzelnes Triebwerk zur Verfügung, das aufgrund der Bahncharakteristik der Sonde nur 85 Kilogramm Hydrazin (N2H4) als Treibstoff benötigt. Die Lagestabilisierung der Sonde erfolgt während des kompletten Fluges in allen drei Achsen. Die Lagebestimmung erfolgt primär über Positionsbestimmung von Sternen anhand der Navigationskamera, zusätzlich während der Kurskorrekturen und dem Vorbeiflug an Wild 2 mit Beschleunigungssensoren, sowie als Backup-Möglichkeit durch Sonnensensoren.

Masse
Sonde 254 kg
Rückkehrkapsel 46 kg
Treibstoff 85 kg
Gesamtgewicht 385 kg

Die zentrale Prozessoreinheit RAD6000, die auf einem 32-Bit-POWER-Prozessor basiert, ist für die komplette Steuerung und Datenverarbeitung verantwortlich. Auf der Prozessorkarte stehen 128 Megabyte Speicher zur Verfügung, wovon 20% für Betriebssystem und Steuerungsprogramme verwendet werden. Der Rest dient als Zwischenspeicher für 600 MB Bilddaten der Navigationskamera, 100 MB Daten des Staubanalysators und 16 MB Daten des Staubflussanalysators, bevor sie zur Erde gesendet werden. Der Funkkontakt wird über das X-Band des Deep Space Network gewährleistet. Stardust hat eine 60 Zentimeter Parabolantenne mit 15 Watt Sendeleistung, die für die Cassini-Sonde entwickelt wurde. Zur Stromversorgung dienen zwei Solarzellenpanels mit insgesamt 6,6 m² Fläche. Für den Zeitraum von Abschattungen und Phasen hohen Stromverbrauchs steht zusätzlich eine 16 Ah NiH2 wiederaufladbare Batterie zur Verfügung. Die Stromversorgung wurde für die Small Spacecraft Technology Initiative (SSTI) entwickelt. Aus Sicherheitsgründen sind alle Komponenten redundant ausgelegt, um Ausfälle kompensieren zu können.

Zum Schutz der Sonde bei der Annäherung an den Kometen, die mit 6,1 km/s erfolgt, befindet sich an der Vorderseite der Sonde ein Schutzschild, das Whipple-Schild. Das Schild besteht im Bereich der Solarpanels aus zwei, im Hauptbereich der Sonde aus drei Schichten Keramikmaterial zur Abbremsung auftreffender Teilchen, hinter diesen Schichten ist jeweils ein Nextel-Gewebe angebracht, um die Trümmerteile aus den Stoßfängerschichten aufzufangen. Die Struktur ist in der Lage, Teilchen bis zu einer Größe von einem Zentimeter von den Instrumenten fernzuhalten.

Navigationskamera

Die Navigationskamera dient in erster Linie zur optischen Navigation der Sonde während der Annäherung an Wild 2. Aus den Daten wird die Distanz zum Kometenkern präzise bestimmt, damit ausreichend Staubproben gesammelt werden können, wobei die Sonde zur Minimierung des Risikos gleichzeitig einen möglichst großen Sicherheitsabstand hält. Die Daten des CCD-Detektors werden auf 12 Bit digitalisiert und mit 300 kPixel pro Sekunde ausgelesen.

Die Kamera soll aber auch hochauflösende Bilder des Kometen während des Vorbeiflugs liefern, aus denen dreidimensionale Karten des Kerns berechnet werden sollen. Es stehen mehrere Filter zur Verfügung, um durch Aufnahmen bei unterschiedlichen Wellenlängen Informationen über die Zusammensetzung der Koma, die Dynamik von Gas und Staub sowie der Jets zu erhalten. Das Kameradesign ist eine Weiterentwicklung der Voyager-Weitwinkelkamera.

Das optische System hat eine Brennweite von 200 Millimetern, eine Apertur von f/3,5 und ist auf den Spektralbereich von 380 bis 1000 Nanometer ausgelegt. Die Auflösung beträgt 60 Mikroradiant/Pixel in einem Sichtfeld von 3,5 x 3,5 Grad. Vor der Kameraoptik ist ein Scanspiegel angebracht, um während des Vorbeifluges an Wild 2 den Kometenkern im Sichtfeld der Kamera halten zu können. Für die Zeitspanne der direkten Begegnung erfolgt die Beobachtung des Kerns über ein Periskop, so dass die empfindliche Kameraoptik hinter dem Whipple-Schild vor Beschädigungen geschützt ist.

Staubflussmonitor

Das Staubflussmonitorsystem (Dust Flux Monitor, DFM) besteht aus dem eigentlichen Staubflussmonitor und zwei weiteren akustischen Einschlagsensoren für die selteneren, aber gefährlichen Einschläge größerer Partikel. Die Aufgaben des Systems bestehen in

  • der Beobachtung des Staubs in der Umgebung der Sonde, um anomales Verhalten der Sonde besser interpretieren zu können.
  • der Bereitstellung von Echtzeit-Flussmessungen von größeren Komapartikeln des Kometen, um frühzeitig mögliche Gefahren zu erkennen, wenn sich die Sonde der Kometenkoma nähert.
  • der Messung der räumlichen und zeitlichen Änderungen des Staubteilchenflusses und deren Massenverteilung beim Vorbeiflug am Kometen Wild 2.
  • der Bereitstellung der Umgebungsbedingungen für die gesammelten Staubproben. Der Staubflussmonitor enthält einen speziellen polarisierten Kunststoff Polyvinylidenfluorid (PVDF), der elektrische Pulssignale liefert, wenn er von kleinen Partikeln mit hoher Geschwindigkeit getroffen wird.

Der Staubflussmonitor ist eine Weiterentwicklung von Sensoren, die auf früheren Missionen zum Einsatz kamen. Dazu gehören

  • der Staubzähler und Massenanalysator der Vega-Missionen zum Kometen Halley
  • das ERIS-Observer-Instrument, das hervorragende Daten lieferte, die jedoch weiterhin als classified gelten (d.h. sie sind noch nicht freigegeben)
  • das SPADUS-Instrument (SPAce DUSt) des ARGOS-Satelliten (Advanced Research and Global Observation Satellite), der im Dezember 1998 gestartet wurde
  • der Hochflussdetektor (High Rate Detector, HRD) der Cassini-Mission zum Saturn, die im Oktober 1997 gestartet wurde.

Der Staubflussmonitor besteht aus der Sensoreinheit (Sensor Unit), der Elektronikbox (Electronics Box) und den beiden akustischen Sensoren. Die SU besteht aus zwei unabhängigen PVDF-Staubsensoren, die in einem Rahmen vor dem Whipple-Schild angebracht sind. Jeder Sensor ist mit einem 1,4 Meter langen Kabel mit der EB im Inneren der Sonde verbunden. Die SU liefert kumulative und differentielle Flüsse in einem Massenbereich von 10-11 bis 10-4 Gramm, sowie kumulative Flüsse für Massen über 10-4 Gramm.

Ein akustischer Sensor ist am ersten Whipple-Schild angebracht, der zweite auf einer steifen Kohlefaser-Epoxid-Platte an der ersten Nexteldecke, der nach Ergebnissen von Labormessungen von Teilchen ausgelöst wird, die mit einer Größe von mindestens 1 Millimeter den Stoßfänger durchschlagen. Diese Sensoren bestehen aus einem piezoelektrischen Quarz-Transducer, der jede Vibration des Schildes in elektrische Signale umwandelt, die zur EB weitergeleitet werden.

Wissenschaftliche Instrumente

Staubanalysator

Staubanalysator (NASA)

Der Staubanalysator (Cometary and Interstellar Dust Analyzer, CIDA) untersucht in Echtzeit den Staub, der auf das Instrument fällt, um die Daten zur Erde zu senden. Das gleiche Instrumentendesign kam auch schon bei der Giotto-Sonde und den beiden Vega-Sonden zum Einsatz. Es handelt sich um ein Massenspektrometer, das die Ionenmassen aufgrund seiner Laufzeit im Instrument bestimmt, wobei die Funktionsweise sehr einfach gehalten ist. Wenn der Staub auf das Target fällt, werden durch ein elektrisch geladenes Gitter Ionen abgetrennt, die sich durch das Instrument bewegen, am Reflektor zurückgeworfen und vom Detektor wieder aufgefangen werden. Hierbei benötigen schwerere Ionen eine größere Zeitspanne vom Gitter zum Detektor als leichte.

CIDA besteht aus einer Einlassöffnung, einer gewellten Aluminiumfolie als Target, dem Ionenextraktor, dem Time-Of-Flight-Massenspektrometer und dem Detektor. Im Unterschied zur Ausführung bei der Giottomission, muss die Targetfolie aufgrund des gegenüber Halley niedrigeren Staubflusses von Wild 2 nicht bewegt werden, zusätzlich wurde der Targetbereich von 5 cm² auf 50 cm² vergrößert.

Bei 6,1 km/s, der Relativgeschwindigkeit der Sonde beim Vorbeiflug an Wild 2, können sowohl ionisierte Atome als auch Molekülionen für die Beobachtung wichtig werden, bei einem Sensitivitätsbereich von 1 bis mindestens 150 amu können somit umfangreiche Analysen durchgeführt werden. Die Daten können zusätzlich aufgezeichnet werden, so dass sie möglicherweise erst Wochen nach der Kometenbegegnung zur Erde zurückgesendet werden können, da die Datenverbindung während der Annäherung an den Kometen bereits durch die Bilddaten ausgelastet sein wird.

CIDA wurde unter Federführung der DARA in enger Kooperation mit dem Max-Planck-Institut für Aeronomie in Lindau von der Firma Hoerner & Sulger in Schwetzingen gebaut, die Software wurde vom Finnischen Meteorologischen Institut in Helsinki entwickelt.

Staubkollektor

Staubkollektor mit Aerogelblöcken (NASA)

Der Staubkollektor besteht aus ein und drei Zentimeter dicken Aerogelblöcken, die in modularen Aluminiumzellen befestigt sind. Die eine Seite des etwa 1000 Quadratzentimeter großen Kollektors wird zur Sammlung interstellaren Staubs verwendet, die andere Seite zur Sammlung von Kometenmaterial.

Das Hauptproblem bei der Sammlung von interstellarem Staub und Komamaterial besteht in der Abbremsung der Teilchen, die bei der Begegnung mit Wild 2 die 6-fache Geschwindigkeit einer Gewehrkugel haben, ohne sie dabei in Struktur und Zusammensetzung zu verändern. Aerogel ist aufgrund seiner hochporösen, sehr leichten Silikatstruktur, die zu 99,8 Prozent aus Luft besteht und annähernd die Dichte von Luft besitzt, für diesen Zweck ideal geeignet, da die Teilchen vergleichsweise sanft abgebremst werden und aufgrund der Transparenz des Materials leicht wiederzufinden sind. Dennoch ist die Auswertung nicht einfach - durch das Verhältnis von Teilchenanzahl und Einschlagsfläche gleicht die Suche nach Aussage von Wissenschaftlern dem Versuch „vier Ameisen auf einem Fußballfeld wiederzufinden“.

Rückkehrkapsel

Die Rückkehrkapsel (Sample Return Capsule, SRC) ist ein kompaktes System, das im Wesentlichen aus dem Probenkanister, dem Hitzeschild und der oberen Abdeckung, sowie Navigationshilfen und einem kleinen Fallschirmsystem besteht. Während der Probennahme wird die obere Abdeckung zurückgeklappt und der Staubkollektor, der etwa die Form eines Tennisschlägers aufweist, ausgeklappt. Nach Beendigung der Probennahme wird der Staubkollektor wieder eingeklappt und die Rückkehrkapsel hermetisch verschlossen.

Bei der Rückkehr zur Erde, kurz bevor Stardust die Erdbahn kreuzte, wurde die Rückkehrkapsel freigesetzt, wobei ihr zur Lagestabilisierung eine Drehbewegung (Drallstabilisierung) mitgegeben wurde. Anschließend flog sie im freien Fall durch die Erdatmosphäre, stabilisiert durch die Lage des Schwerpunktes, die Drehbewegung und die aerodynamische Form. In etwa drei Kilometer Höhe öffnete sich ein Bremsfallschirm zur Verringerung der Fallgeschwindigkeit. Die Landung erfolgte planmäßig innerhalb des 84 x 30 Kilometer großen Gebiets des Utah Test and Training Range (UTTR). Um die Kapsel leichter wiederzufinden, besitzt sie einen UHF-Peilsender. Zusätzlich wurde die Landung mit bodengestützten Radarsystemen verfolgt und konnte mit Infrarotkameras gefilmt werden. Nach der Bergung mit Helikoptern oder Bodenfahrzeugen wurde die Kapsel zur UTTR gebracht, bevor sie im Johnson Space Center geöffnet, und der gesammelte Staub extrahiert und analysiert wurde.

Siehe auch

Literatur

Quellen

  1. NASA Gives Two Successful Spacecraft New Assignments
  2. NASA-Bericht: Blowing a Hole in a Comet: Take 2, 26. September 2007

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • NeXT — Computers Fundación 1985 Fundador(es) Steve Jobs Desaparición 1996 Sede Redwoo …   Wikipedia Español

  • next — [ nekst ] function word *** Next is used in the following ways: as a determiner (followed by a noun): I ll see you next week. as an adjective: I m leaving town on the next train. I didn t realize what had happened until the next day. as a pronoun …   Usage of the words and phrases in modern English

  • Next — can refer to: Film and stage Next (2007 film), an American film starring Nicolas Cage Players (film), a Bollywood film produced under the name Next Next (play), by Terrence McNally NEXT: A Primer on Urban Painting, a documentary film released in… …   Wikipedia

  • NeXT — NeXT, Inc. Rechtsform Inc. Gründung 1986 Auflösung 1996 Sitz …   Deutsch Wikipedia

  • Next — Next: (англ. next, следующий). NeXT  название компьютерной компании и выпускавшихся ею рабочих станций. Next  название музыкального альбома группы Journey. Next  название музыкального альбома Ванессы Уильямс. NEXT … …   Википедия

  • Next — (n[e^]kst), a., superl. of {Nigh}. [AS. n[=e]hst, ni[ e]hst, n[=y]hst, superl. of ne[ a]h nigh. See {Nigh}.] 1. Nearest in place; having no similar object intervening. Chaucer. [1913 Webster] Her princely guest Was next her side; in order sat the …   The Collaborative International Dictionary of English

  • next to — prep 1.) very close to someone or something, with nothing in between = ↑beside ▪ There was a little girl sitting next to him. 2.) next to nothing very little ▪ He knows next to nothing about antiques. 3.) used to give a list of things you like,… …   Dictionary of contemporary English

  • next — [nekst] adj. [ME nexte < OE neahst, niehst, superl. of neah, NIGH] just before or after in time, space, degree, or rank; nearest; immediately preceding or following adv. 1. in the time, place, degree, or rank nearest, or immediately preceding… …   English World dictionary

  • Next — puede hacer mención a: Next, thriller de ciencia ficción dirigido por Lee Tamahori basado en la historia corta El hombre dorado de Philip K. Dick, protagonizado por Nicolas Cage. Next palabra inglesa que significa próximo o siguiente. NeXT, una… …   Wikipedia Español

  • next — ► ADJECTIVE 1) coming immediately after the present one in time, space, or order. 2) (of a day of the week) nearest (or the nearest but one) after the present. ► ADVERB 1) immediately afterwards. 2) following in the specified order: the next… …   English terms dictionary

  • next — As an adjective meaning ‘immediately following’, next normally precedes the noun it is governing (next time / the next three), but in denoting time it can follow the noun (on Friday next / in July next). Care needs to be taken in referring to a… …   Modern English usage

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”