PVD-Verfahren

PVD-Verfahren

Der Begriff physikalische Gasphasenabscheidung (englisch physical vapour deposition, kurz PVD) bezeichnet eine Gruppe von vakuumbasierten Beschichtungsverfahren bzw. Dünnschichttechnologien, bei denen im Gegensatz zu CVD-Verfahren die Schicht direkt durch Kondensation eines Materialdampfes des Ausgangsmaterials gebildet wird.

Die Verfahren sind durch folgende Punkte gekennzeichnet:

  1. Gas- (Dampf-) Erzeugung der schichtbildenden Teilchen
  2. Transport des Dampfes zum Substrat (z. B. Fräswerkzeug)
  3. Kondensation des Dampfes auf dem Substrat und Schichtbildung

Inhaltsverzeichnis

Einteilung

Zur Gruppe der Verfahren der physikalischen Gasphasenabscheidung zählen die unten aufgeführten Technologien sowie reaktive Varianten dieser Prozesse.

  • Verdampfungsverfahren
    • Thermisches Verdampfen (auch Bedampfen genannt)
    • Elektronenstrahlverdampfen (engl. electron beam evaporation)
    • Laserstrahlverdampfen (engl. pulsed laser deposition, pulsed laser ablation): Atome und Ionen werden durch einen kurzen intensiven Laserpuls verdampft.
    • Lichtbogenverdampfen (engl. arc evaporation, Arc-PVD): Atome und Ionen werden durch einen starken Strom, der bei einer elektrischen Entladung zwischen zwei Elektroden fließt (wie bei einem Blitz), aus dem Ausgangsmaterial herausgelöst und in die Gasphase überführt.
    • Molekularstrahlepitaxie (engl. molecular beam epitaxy)
  • Sputtern (Sputterdeposition, Kathodenzerstäubung): Das Ausgangsmaterial wird durch Ionenbeschuß zerstäubt und in die Gasphase überführt.
  • Ionenplattieren

Verfahren

Allen diesen Verfahren ist gemein, dass das abzuscheidende Material, in fester Form in der meist evakuierten Beschichtungskammer vorliegt. Durch den Beschuss mit Laserstrahlen, magnetisch abgelenkten Ionen oder Elektronen sowie durch Lichtbogenentladung wird das Material, das als Target bezeichnet wird, verdampft. Wie hoch der Anteil an Atomen, Ionen oder größeren Clustern im Dampf ist, ist von Verfahren zu Verfahren unterschiedlich. Das verdampfte Material bewegt sich entweder ballistisch oder durch elektrische Felder geführt durch die Kammer und trifft dabei auf die zu beschichtenden Teile, wo es zur Schichtbildung kommt.

Damit die Dampfteilchen die Bauteile auch erreichen und nicht durch Streuung an den Gasteilchen verloren gehen, muss im Unterdruck gearbeitet werden. Typische Arbeitsdrucke liegen im Bereich von 10−4 Pa bis ca. 10 Pa. Da sich die Dampfteilchen geradlinig ausbreiten, werden Flächen, die vom Ort der Dampfquelle aus gesehen nicht sichtbar sind, mit einer geringeren Beschichtungsrate beschichtet. Sollen alle Flächen möglichst homogen beschichtet werden, müssen die Teile während der Beschichtung in geeigneter Weise bewegt werden. Dies geschieht meist durch Rotation des Substrats.

Treffen die Dampfteilchen nun auf das Substrat, beginnen sie sich durch Kondensation an der Oberfläche abzulagern. Die Teilchen bleiben dabei nicht an Ort und Stelle, an der sie auf das Substrat treffen, sondern bewegen sich, je nachdem wie hoch ihre Energie ist, an der Oberfläche entlang (Oberflächendiffusion), um einen energetisch günstigeren Platz zu finden. Dies sind Stellen an der Kristalloberfläche mit möglichst vielen Nachbarn (höhere Bindungsenergie).

Um die Beschichtungsrate und Schichthomogenität zu steigern werden abhängig vom Beschichtungsprozess und dem abzuscheidenen Material die Anlagen leicht variiert. So wird beispielsweise beim thermischen Verdampfen an die zu bedampfenden Teile eine negative Spannung (Bias-Spannung) angelegt. Diese beschleunigt die positiv geladenen Dampfteilchen bzw. Metallionen (siehe entsprechende Artikel).

Da Verfahren zur physikalischen Gasphasenabscheidung Vakuumbeschichtungen sind, werden sie in der Produktion zumeist im Stapelbetrieb (Batch-Betrieb) betrieben: Chargieren der Vakuumkammer/Evakuieren/Beschichten/Belüften, Öffnen und Entnahme der beschichteten Teile. Für bestimmte Anwendungen (Beschichtung von Blechen, Fasern oder Drähten und Architekturglas) gibt es jedoch Durchlaufanlagen, bei denen der Unterdruck über ein Schleusensystem erreicht wird und das zu beschichtende Gut kontinuierlich zugeführt wird.

Mit einigen PVD-Verfahren können sehr niedrige Prozesstemperaturen verwirklicht werden. Dadurch ist es möglich selbst niedrigschmelzende Kunststoffe zu beschichten.

Schichten

Mit den verschiedenen PVD-Varianten können fast alle Metalle und auch Kohlenstoff in sehr reiner Form abgeschieden werden. Führt man dem Prozess Reaktivgase wie Sauerstoff, Stickstoff oder Kohlenwasserstoffe zu, lassen sich auch Oxide, Nitride oder Carbide abscheiden.

Verfahren zur physikalischen Gasphasenabscheidung werden vorwiegend zur Abscheidung dünner Schichten im Bereich einiger Nanometer bis hin zu einigen Mikrometern verwendet. Mit der Schichtdicke nehmen auch die Eigenspannungen innerhalb der Schichten zu, was zur Ablösung vom Substrat (Delamination) führen kann. Dies ist einer der Gründe, weshalb sich mit PVD-Verfahren nicht beliebig dicke Schichten herstellen lassen.

Anwendungen

Schichten der physikalischen Gasphasenabscheidung finden in vielen Bereichen der Industrie Verwendung. Vor allem im Bereich der spanenden Bearbeitung werden inzwischen größtenteils Werkzeuge aus beschichteten Schneidstoffen eingesetzt. Als Beschichtungen kommen heute vor allem Hartstoffschichten auf Basis von Titannitrid (TiN), Titancarbonitrid (TiCN) oder Titanaluminiumnitrid (TiAlN) zum Einsatz. Bereits Anfang der 90er Jahre wurden durch verschiedene Forschungseinrichtungen weitere Einsatzmöglichkeiten im Bereich der Werkzeugbeschichtungen für den Druckguss von Aluminium und Magnesium untersucht. Bei diesen Anwendungen kommen vor allem chrombasierende Schichtsysteme wie Chromnitrid (CrN), Chromvanadiumnitrid (CrVN) und Chromaluminiumnitrid (CrAlN) zum Einsatz. Des Weiteren werden PVD-Schichten in der Mikroelektronik zum Erzeugen von unter anderem Metall- oder (organischen) Halbleiterschichten eingesetzt. Auch Architekturgläser oder Displays werden mit Schutzschichten im PVD-Verfahren überzogen. PE-Folien in der Lebensmittelindustrie (z. B. Kartoffelchipstüten) erhalten von innen eine dünne PVD-Schicht als Dampfsperre. Im Bereich der Unterhaltungselektronik werden Datenträger wie Festplatten und CD, DVDs im PVD-Verfahren bedampft.

Literatur

  • Sergio Stefano Guerreiro: Qualität- und Standzeitverbesserung von Aluminiumdruckguß durch Einsatz moderner PVD-Schichten, Rheinisch-Westfälische Technische Hochschule Aachen, Dissertation 1998, VDI-Schriftenreihe Nr. 533, ISBN 3-18-353305-7
  • Thomas Hornig: Entwicklung von Werkstoffverbunden für den Einsatz in Thixoformingwerkzeugen für die Aluminium- und Stahlverarbeitung, Rheinisch-Westfälische Technische Hochschule Aachen, Dissertation 2002, ISBN 3-89653-935-3

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • PVD-Verfahren —   [PVD Abkürzung für englisch physical vapour deposition], die Beschichtung vorzugsweise metallischer Werkstoffe durch physikalische Dampfabscheideprozesse mithilfe plasmaaktivierter Verfahren unter Vakuum. Hierzu gehören das Ionenplattieren, das …   Universal-Lexikon

  • Physikalische Gasphasenabscheidung — Der Begriff physikalische Gasphasenabscheidung (englisch physical vapour deposition, kurz PVD) bezeichnet eine Gruppe von vakuumbasierten Beschichtungsverfahren bzw. Dünnschichttechnologien. Anders als bei Verfahren der chemischen… …   Deutsch Wikipedia

  • Physical vapor deposition — Der Begriff physikalische Gasphasenabscheidung (englisch physical vapour deposition, kurz PVD) bezeichnet eine Gruppe von vakuumbasierten Beschichtungsverfahren bzw. Dünnschichttechnologien, bei denen im Gegensatz zu CVD Verfahren die Schicht… …   Deutsch Wikipedia

  • Physical vapour deposition — Der Begriff physikalische Gasphasenabscheidung (englisch physical vapour deposition, kurz PVD) bezeichnet eine Gruppe von vakuumbasierten Beschichtungsverfahren bzw. Dünnschichttechnologien, bei denen im Gegensatz zu CVD Verfahren die Schicht… …   Deutsch Wikipedia

  • Dünnschicht-Technologie — Bei der Dünnschichttechnologie werden Materialien (dünne Schichten üblicherweise unter 1 µm) durch verschiedene Verfahren auf das Substrat aufgebracht, um anschließend bearbeitet bzw. strukturiert zu werden. Die Abscheidung der Schichten erfolgt… …   Deutsch Wikipedia

  • Dünnschichttechnik — Bei der Dünnschichttechnologie werden Materialien (dünne Schichten üblicherweise unter 1 µm) durch verschiedene Verfahren auf das Substrat aufgebracht, um anschließend bearbeitet bzw. strukturiert zu werden. Die Abscheidung der Schichten erfolgt… …   Deutsch Wikipedia

  • Dünnschichttechnologie — Die Dünnschichttechnologie, auch Dünnschichttechnik genannt, beschäftigt sich mit der Herstellung und Bearbeitung von dünnen Schichten unterschiedlicher Materialien, wie metallische, dielektrische und halbleitende Werkstoffe. Die Dicke solcher… …   Deutsch Wikipedia

  • Thermisches Verdampfen — (auch Aufdampfen oder Bedampfen, engl. thermal evaporation) ist ein zu den PVD Verfahren gehörende hochvakuumbasierte Beschichtungstechnik. Dabei handelt es sich um ein Verfahren, bei der das gesamte Ausgangsmaterial durch eine elektrische… …   Deutsch Wikipedia

  • Zirconiumnitrid — Zirkoniumnitrid Mulitlayerbeschichtung (MLB) Zr CrC CrCN Cr ist eine mehrlagige Beschichtung, die zur Verbesserung von Verschleißeigenschaften und Korrosionsbeständigkeit Anwendung findet. Die MLB ist ein metallischer Hartstoff, dessen Oberfläche …   Deutsch Wikipedia

  • Mikrotechnik: Typische Herstellungsverfahren —   Den Unterschied zwischen Mikroelektronik und Mikrotechnik kann man am ehesten anhand der Idee einer implantierbaren Medikamenten Mikrodosierpumpe aufzeigen. Diese soll möglichst klein sein und bei Bedarf beispielsweise Insulin an den Körper… …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”