Pluripotente Stammzelle

Pluripotente Stammzelle
Menschliche embryonale Stammzellen. A: undifferenzierte Kolonien. B: Neuron-Tochterzelle

Als Stammzellen werden allgemein Körperzellen bezeichnet, die sich in verschiedene Zelltypen oder Gewebe ausdifferenzieren können. Je nach Art der Stammzelle und ihrer Beeinflussung haben sie das Potential, sich in jegliches Gewebe (embryonale Stammzellen) oder in bestimmte festgelegte Gewebetypen (adulte Stammzellen) zu entwickeln.

Stammzellen sind in der Lage, Tochterzellen zu generieren, die selbst wiederum Stammzelleigenschaften besitzen, aber auch solche mit größerer Ausdifferenzierung[1]. Hierzu befähigt sie ein noch nicht vollständig geklärter Mechanismus asymmetrischer Zellteilung. Über das jeweilige Schicksal der Zellen entscheidet dabei vor allem das biologische Milieu, in dem sie sich befinden.

Stammzellen werden vor allem durch ihr ontogenetisches Alter und ihr Differenzierungspotenzial unterschieden: die ontogenetisch frühesten Stammzellen sind die pluripotenten embryonalen Stammzellen, aus denen später die primitiven Keimstammzellen, sowie die somatischen Stamm- und Progenitorzellen (oder Vorläuferzellen) hervorgehen.

Auch Pflanzen besitzen Stammzellen. Diese befinden sich an der Spitze des Sprosses im sogenannten Apikalmeristem, sowie an den Wurzelspitzen im Wurzelmeristem. Im Gegensatz zu fast allen tierischen und menschlichen Zellen besitzen bei Pflanzen praktisch alle Zellen die Fähigkeit, einen kompletten Organismus zu regenerieren.

Inhaltsverzeichnis

Embryonale Stammzellen

Embryonale Stammzellen (ES-Zellen) sind in vivo und in vitro in der Lage, sich in Zellen aller drei Keimblätter (Entoderm, Ektoderm und Mesoderm) sowie in Zellen der Keimbahn auszudifferenzieren. Sie werden daher als pluripotent bezeichnet. ES-Zellen werden für experimentelle Zwecke - nach Befruchtung der Eizelle im Embryo-Entwicklungsstadium der Blastozyste - aus der inneren Zellmasse (ICM; auch Embryoblast genannt) gewonnen [2].

ES-Zellen wurden erstmals 1981 isoliert – aus Blastozysten der Maus. Sie neigen in vitro dazu, spontan zu differenzieren. Dies kann durch Faktoren unterbunden werden, welche die Selbsterneuerung der Zellen fördern. Mehrere solcher Stoffe wurden seit Ende der 1980er Jahre identifiziert, maßgeblich durch die Gruppe um Austin Smith in Edinburgh. ES-Zellen können daher im Prinzip unbegrenzt vermehrt werden, was unter anderem auch mit der hohen Aktivität des Enzyms Telomerase zusammenhängt. Damit unterscheiden sie sich von anderen (sogenannten primären) Körperzellen, die ihre Teilungsaktivität in der Kulturschale meist nach kurzer Zeit einstellen (replikative Seneszenz).

ES-Zellen bilden im Embryo die Vorläufer für sämtliche Körperzellen, nicht jedoch für die embryonalen Anteile der Plazenta. 2003 konnte im Mausmodell zudem erstmals gezeigt werden, dass ES-Zellen auch zu Keimzellen (Gameten, in der genannten Studie zu Eizellen) differenzieren können[3].

Eine bemerkenswerte Eigenschaft von ES-Zellen der Maus besteht darin, dass sie in Präimplantationsembryonen wieder eingeführt werden können und nach deren Transfer in scheinschwangere Tiere am Aufbau aller fötalen Gewebe beteiligt werden. Dies kann für die zielgerichtete Ausschaltung bestimmter Gene in Mäusen benutzt werden. Knock-out-Mäuse, die sich unter Nutzung von ES-Zellen deutlich schneller produzieren lassen als mit herkömmlichen Techniken, sind von hohem Wert für die Erforschung von Genfunktionen und werden auch als menschliche Krankheitsmodelle verwendet.

Weiterhin können ES-Zellen in vitro mehr oder weniger gezielt zu verschiedensten Zelltypen ausdifferenziert werden, z. B. in Nervenzellen. Dieses Gebiet wurde insbesondere ab 1998 mit der erstmaligen Etablierung von humanen ES-Zellen (hES-Zellen) durch James Thomson belebt. hES-Zellen werden i. a. aus sogenannten überzähligen Embryonen gewonnen, die durch In-vitro-Fertilisation entstanden sind, nicht mehr für Fortpflanzungszwecke benötigt werden und daher tiefgefroren gelagert werden. Das Hauptinteresse der Forschung an hES-Zellen gilt der Differenzierung in spezialisierte Zellen, um diese für mögliche Zellersatztherapien verfügbar zu machen.

ES-Zellen werden möglicherweise eines Tages in der Medizin als Ersatzmaterial dienlich sein können. Die Krankheit Morbus Parkinson konnte unter Nutzung differenzierter hES-Zellen zumindest in Tierversuchen bereits behandelt werden. Solche und andere - vor allem im Tiermodell gewonnenen - Erkenntnisse wurden jedoch noch nicht bei größeren Säugetieren bestätigt. Trotzdem hat die US-amerikanische Firma Geron bereits erste klinische Studien unter Nutzung von hES-Zellen für die Therapie von Rückenmarksverletzungen für 2008 angekündigt. Prinzipiell bedürfen die bisherigen Ergebnisse jedoch noch einer strengen Überprüfung, so dass im Gegensatz zu den adulten Stammzellen (s.u.) eine mögliche klinische Anwendung noch weit entfernt ist[4]. So können hES-Zellen beispielsweise nach Transplantation in Versuchstiere Tumoren bilden, so dass vor einem klinischen Einsatz sichergestellt sein muss, dass die Transplantate keine undifferenzierten hES-Zellen mehr enthalten. Von großer Relevanz könnte auch die immunologisch bedingte Abstoßung entsprechender Transplantate durch den Empfänger sein, ein aus der Transplantationsmedizin hinlänglich bekanntes Problem.

Klonen

Neben der Gewinnung von ES-Zellen aus IVF-Blastozysten ist auch eine Gewinnung von ES-Zellen durch Klonen von Embryonen möglich. Grundlage für diese Möglichkeit war das erste erfolgreiche Klonen eines Säugetiers im Jahr 1997, des Schafs „Dolly“. Unter Nutzung dieser Technik kann durch Übertragung des Zellkerns aus einer Körperzelle in eine unbefruchtete, von der inneren Zellmasse befreite Eizelle ein früher Embryo entstehen, aus dem ES-Zellen angelegt werden können. Die Methode hätte bei der Anwendung auf den Menschen den Vorteil, dass mit dem Spender genetisch (und damit immunologisch) identische ES-Zellen zur Verfügung stünden.

Die Forschung an embryonalen Stammzellen gelang auch durch gefälschte Ergebnisse in den Fokus der Öffentlichkeit: Im Jahr 2004 publizierte das Forschungsteam um den südkoreanischen Tiermediziner Hwang Woo-suk, es sei erstmals gelungen, einen menschlichen Embryo zu klonen und auf diese Weise Stammzelllinien zu gewinnen (Therapeutisches Klonen). 2005 folgte eine Publikation, ebenfalls in der angesehenen Fachzeitschrift Science, derzufolge die weltweit ersten maßgeschneiderten embryonalen Stammzellen für schwerstkranke Patienten etabliert worden seien. Beide Publikationen stellten sich als weitgehend gefälscht heraus.

Einen möglichen Durchbruch im Therapeutischen Klonen von Primaten stellen die erstmals im Juni 2007 vorgestellten Ergebnisse eines US-amerikanischen Forscherteams um Shoukhrat Mitalipov dar.[5] Dem Team gelang es, Rhesusaffen zu klonen und aus den erhaltenen Embryonen zwei Linien embryonaler Stammzellen zu gewinnen. Angewandt wurde dabei das gleiche Verfahren wie bei dem Schaf „Dolly“. Diese Ergebnisse wurden am 14. November 2007 von unabhängiger Seite bestätigt.[6]

Ethische Kontroverse

Die Art der Gewinnung menschlicher embryonaler Stammzellen (abgekürzt oft: hES-Zellen; h = human) nach In-vitro-Fertilisation führte zu einer hitzigen, bis heute andauernden ethischen Debatte.

Die Verwendung von menschlichen embryonalen Stammzellen in der Forschung und Medizin wird von einem Teil der Gesellschaft abgelehnt, da zu ihrer Gewinnung die Zerstörung von frühen menschlichen Embryonen erforderlich ist („verbrauchende“ Embryonenforschung). Grundsätzlich geht es bei der Diskussion in Deutschland vor allem um die Frage, ob der frühe Embryo als menschliches Wesen unter den Würdeschutz des Grundgesetzes fällt und damit sein Leben keinerlei Abwägungen unterliegen dürfe. Die Befürworter der Forschung an embryonalen Stammzellen führen in dieser Diskussion das Argument des möglicherweise sehr hohen positiven Potentials der Forschung mit humanen embryonalen Stammzellen ins Feld: Die Wissenschaftler erhoffen sich unter anderem eine Heilung schwerer Krankheiten (Parkinson-Krankheit, Diabetes mellitus, Querschnittslähmung) sowie die Möglichkeit, zerstörte Organe nachwachsen zu lassen. Konkrete Hinweise auf solche therapeutischen Erfolge gibt es allerdings zum gegenwärtigen Zeitpunkt lediglich aus Tierexperimenten mit Nagern.

Vertreter der katholischen Amtskirche wie die Deutsche Bischofskonferenz vertreten die Meinung, eine befruchtete Eizelle sei ein Mensch und ihm stünden alle Rechte des Grundgesetzes zu. Andere Anhänger glauben, dieser Embryo habe eine Seele und stünde deshalb unter besonderem Schutz. Darauf Bezug nehmend weisen manche Befürworter der Stammzellforschung darauf hin, dass man im Anschluss an Thomas von Aquin in der katholischen Kirche bis in die Neuzeit glaubte, dass die Beseelung des Embryos schrittweise erfolge (Sukzessivbeseelung) und die höchste Form der Seele, die anima intellectiva, erst ca. drei Monate nach der Empfängnis übertragen werde. Endgültig hat die katholische Kirche erst in der Bulle Apostolicae Sedis (1869, unter Pius IX.) die Lehre von der vollen Menschwerdung am 80. Tag aufgegeben.

Die evangelische Kirche hingegen möchte die Dialogfindung unterstützen, um einen Konsens in dieser Frage zu finden. Einig sind sich die Vertreter der evangelischen Kirche darüber, dass für die Isolierung embryonaler Stammzellen keine Embryonen hergestellt werden dürfen. Zur Frage der generellen Verwendung von schon bestehenden embryonalen Stammzellen hat sie bisher noch nicht Stellung bezogen, möchte aber die Grundlagenforschung an embryonalen Stammzellen „so schnell wie möglich hinter sich lassen.“[7]

Gesetzeslage

Deutschland

Nach dem Embryonenschutzgesetz ist es in Deutschland verboten, menschliche Embryonen (also auch Blastozysten, die als Quelle für embryonale Stammzellen dienen) für Forschungszwecke herzustellen, zu klonen oder zu zerstören. Die Forschung an importierten embryonalen Stammzellen ist jedoch unter Auflagen möglich und wurde zunächst durch das Stammzellgesetz vom Juli 2002 geregelt. Dieses Gesetz und insbesondere die darin enthaltene Regelung, dass nur embryonale Stammzellen nach Deutschland importiert werden durften, die vor dem 1. Januar 2002 gewonnen worden waren (Stichtagsregelung), war von Beginn an umstritten. Im Frühjahr 2008 debattierte der Deutsche Bundestag über eine Novellierung des Stammzellgesetzes, in der neben der Verschiebung des Stichtages auch die völlige Freigabe des Imports sowie das Verbot der Stammzellforschung mit embryonalen Stammzellen in Gruppenanträgen vorgeschlagen wurde.[8] Am 11. April 2008 beschloss der Deutsche Bundestag einen neuen Stichtag, so dass nun Stammzellen importiert werden dürfen, die vor dem 1. Mai 2007 gewonnen wurden.[9]

Österreich

In Österreich ist die Forschung an importierten pluripotenten embryonalen Stammzellen nach geltendem Recht ohne Einschränkungen erlaubt. Dies gilt auch für das therapeutische Klonen. Verboten wäre jedoch gemäß § 9 des Fortpflanzungsmedizingesetzes die Gewinnung von embryonalen Stammzellen, sofern diese in Österreich stattfände. Die Verwendung von totipotenten Stammzellen ist nur zu Zwecken der Fortpflanzung erlaubt. [10]

Polen

In Polen wird die Forschung an menschlichen Embryonen bestraft, wenn diese zur Zerstörung des Embryos in vitro führt. Dies wird mit der Abtreibung gleichgesetzt und kann mit Freiheitsstrafen von bis zu drei Jahren geahndet werden. Zur Forschung mit embryonalen Stammzellen aus dem Ausland gibt es keine bindende gesetzliche Regelung. Zurzeit gilt die Richtlinie vom 13. Januar 2004; sie besagt, dass „Forschung an embryonalen Stammzellen nur dann zugelassen werden sollte, wenn sie die Rettung menschlichen Lebens zum Ziel hat.“[11] Hier bietet die Definition des „menschlichen Lebens“ jedoch viel Interpretationspielraum.

Schweiz

In der Schweiz dürfen Wissenschaftler aus überzähligen menschlichen Embryonen (das heißt aus solchen, die in der Fortpflanzungsmedizin keine Verwendung finden) Stammzellen gewinnen und mit den Zellen forschen. Der Schweizer Bundesrat verabschiedete im Februar 2005 ein entsprechendes Gesetz, nachdem sich zuvor in einer Volksabstimmung mehr als 66 Prozent der Schweizer Wähler für dieses Gesetz ausgesprochen hatten. [12] Voraussetzung gemäß Art. 5 ff. Stammzellforschungsgesetz ist, dass die Einwilligung des Spenderpaares vorliegt, die Spende unentgeltlich erfolgt und keine der Personen, für deren Forschungsprojekt die Zellen gewonnen werden, am Fortpflanzungsverfahren beteiligt war. Das Klonen von menschlichen Zellen ist verboten.

Großbritannien

In Großbritannien ist sowohl die Erzeugung von menschlichen embryonalen Stammzellen als auch das Klonen menschlicher Embryonen zu Forschungszwecken erlaubt.

Vereinigte Staaten

In den USA wird Forschung an embryonalen Stammzellen mit öffentlichen Mitteln des Bundes gefördert, allerdings nur wenn die verwendeten Stammzelllinien schon vor August 2001 existierten. Im Juli 2006 haben der US-Senat und das Repräsentantenhaus für eine Aufhebung dieser Einschränkung gestimmt; dagegen hat Präsident Bush erstmals in seiner Amtszeit ein Veto eingelegt. Für die Forschungsförderung der Bundesstaaten und privat finanzierte Forschung hat die Einschränkung allerdings keine Gültigkeit.[13] Im Jahr 2004 hat Kalifornien in einer Volksabstimmung beschlossen die embryonale Stammzellforschung mit $3 Milliarden zu fördern.[14]

Postembryonale Stammzellen

Die Gruppe der postembryonalen Stammzellen umfasst all jene Stammzellen, die nach Abschluss der Embryonalentwicklung im Organismus von Säugetieren vorkommen. Nach ihrem ontogenetischen Alter werden sie weiterhin in fötale, neonatale und adulte Stammzellen unterteilt.

Das Differenzierungspotential von postembryonalen Stammzellen ist nach gegenwärtiger Erkenntnis auf die Ausreifung genetisch determinierter Gewebe – etwa der Haut, der Leber oder des hämatopoetischen Systems - beschränkt. Sie werden daher im Gegensatz zu den ES-Zellen nicht mehr als pluripotent, sondern nur noch als multipotent bezeichnet.

Adulte Stammzellen

Während embryonale Stammzellen nur im frühen Embryo vorkommen, sind adulte (auch: somatische) Stammzellen im Organismus nach der Geburt (postnatales Stadium) vorhanden. Aus diesen Zellen werden während der gesamten Lebensdauer des Organismus neue spezialisierte Zellen gebildet. Adulte Stammzellen, die in Organen (besonders im Knochenmark, in der Haut, aber auch im Fettgewebe, in der Nabelschnur und im Nabelschnurblut, im Gehirn, der Leber oder der Bauchspeicheldrüse) zu finden sind, haben aber im allgemeinen in Zellkultur ein deutlich geringeres Selbsterneuerungsvermögen und ein eingeschränkteres Differenzierungspotential als embryonale Stammzellen. So können sich neurale Stammzellen zu allen Zelltypen des Nervengewebes (Neuronen, Glia etc.), wohl aber nicht zu Leber- oder Muskelzellen entwickeln. Ein Keimblatt-überschreitendes Differenzierungspotential bestimmter Stammzelltypen (Fähigkeit zur Transdifferenzierung) wurde in verschiedenen Studien beobachtet, ist jedoch höchst umstritten.

Adulte Stammzellen sind in jedem Individuum verfügbar, so dass die Perspektive des Ersatzes durch körpereigene, d. h. autologe Zellen gegeben ist und sie sich dadurch für die Technik des Tissue Engineering anbieten. Auch scheint die Neigung zur malignen Entartung bei Implantation adulter Stammzellen geringer zu sein als bei embryonalen Stammzellen. Eine Entartung konnte bei der klinischen Verwendung von adulten Stammzellen bisher nicht beobachtet werden.

Die Gewinnung von adulten Stammzellen und von Progenitorzellen aus dem Knochenmark erfolgt mittels Punktion des Beckenknochens unter Vollnarkose oder neuerdings verstärkt mittels der Stammzellapherese. Die Gewinnung von Nabelschnurblut-Stammzellen erfolgt nach der Abnabelung des Kindes, durch die Entnahme des restlichen, noch in Nabelschnur und Plazenta befindlichen Bluts. Die Gewinnung von multipotenten Stammzellen aus der Haut erfolgt mittels einer kleinen Hautbiopsie in örtlicher Betäubung im ambulanten Bereich. Danach werden die Stammzellen aus dem Gewebeverband gelöst und stehen zur weiteren Verwendung oder der Lagerung über viele Jahre als Vorsorge, wie schon heute von einem deutschen Unternehmen in Heidelberg angeboten, zur Verfügung. Im Rahmen einer normalen Eigenblutspende können zirkulierende Endotheliale Vorläuferzellen gewonnen werden. Das Potential dieser autologen (körpereigenen) Vorläuferzellen für die Therapie von Herz- und Gefäßerkrankungen wird derzeit in klinischen Studien untersucht. Der Vorteil der Verwendung autologer Vorläuferzellen liegt in der fehlenden Immunogenität, d. h. die transplantierten Zellen werden vom Immunsystem nicht als fremd erkannt.

Künstlich reprogrammierte Stammzellen

Kazutoshi Takahashi and Shinya Yamanaka von der Universität Kyoto, und Forscher von der Universität Wisconsin berichteten 2006 bzw. 2007 in Cell und Science, es sei ihnen gelungen, Körperzellen erwachsener Menschen in induzierte pluripotente Stammzellen (iPS) umzuwandeln [15]. Dabei seien vier zentrale, ruhende Entwicklungsgene in den Zellen aktiviert worden, so dass sie in eine Art embryonalen Zustand zurückversetzt wurden. Aus den künstlich reprogrammierten Stammzellen konnten die Forscher in der Petrischale gereifte Zellen, z. B. Herzmuskel- und Nervenzellen, heranzüchten. [16] [17].

Zur Reprogrammierung werden gegenwärtig die Gene Oct-4, Sox-2, c-Myc und Klf-4 mit Retroviren in die Zellen geschleust (Transfektion). Im Tierversuch entwickelte ein Fünftel der verwendeten Mäuse Tumore, weil zwei der verwendeten Gene Krebsgene waren. Um bei medizinischer Anwendung ein Risiko durch transfizierte Gene auszuschließen, müssen dafür noch alternative Methoden zur Reprogrammierung gefunden werden. Geforscht wird dafür an kleinen Molekülen (z.B. Peptiden), die die natürlich im Erbgut der Zelle vorkommenden Stammzellgene aktivieren [18]. Um Tumorbildung zu vermeiden, versuchen Forscher außerdem, die Methode der Geneinschleusung mit Retroviren und die Nutzung der Protoonkogene ("Krebserzeuger") c-myc und Klf-4 zu vermeiden, indem die Einschleusung mit ungefährlichen Adenoviren und alternativen Genen (Nanog, lin-28) durchgeführt wird[19] [20]. Darüber hinaus ist es gelungen, iPS-Zellen durch Transfektion nur eines Pluripotenzgens aus Zellen zu erzeugen, die die übrigen drei Gene natürlich exprimieren [21].

Im Dezember 2007 berichteten Forscher um Jacob Hanna vom Whitehead Institute for Biomedical Research im US-amerikanischen Cambridge in der Wissenschaftszeitschrift Science, dass es dem Team gelungen ist, mit iPS-Zellen Mäuse zu heilen, die an Sichelzellenanämie gelitten hatten. Aus den aus dem Schwanz mittels Reprogrammierung gewonnenen iPS-Zellen entfernten die Forscher das Gen für c-Myc, da das Eiweiß bewiesenermaßen Krebs verursacht, und im nächsten Schritt wurde das veränderte Gen, das die Sichelzellenanämie auslöst, mittels homologe Rekombination beseitigt und durch die gesunde Erbanlage ersetzt. Aus den so reparierten Stammzellen wurden blutbildende Vorläuferzellen gezüchtet, die sich zu verschiedenen Blut- und Immunzellen weiterentwickeln können. Die Vorläuferzellen wurden dann in die erkrankten Mäuse transplantiert, wo sie offenbar zu gesunden Blutzellen heranwuchsen. Wie das Team berichtet, verschwanden die Symptome der Versuchstiere durch die Behandlung nahezu vollständig und die Mäuse waren auch nach zwölf Wochen noch krebsfrei.[22]

Stammzellmedizin

Seit über 40 Jahren werden die blutbildenden Stammzellen des Knochenmarks in der Behandlung von Leukämie und von Lymphomen eingesetzt (siehe auch Stammzelltransplantation). Während einer Chemotherapie z. B. werden die meisten schnell wachsenden Zellen durch zytotoxische Bestandteile zerstört. Dadurch werden nicht nur die Krebszellen abgetötet; auch die Stammzellen, die andere Körperzellen reparieren sollten, werden durch die Therapie in Mitleidenschaft gezogen. Besonders betroffen sind hierbei die blutbildenden Stammzellen. Deshalb werden vor der Chemotherapie Stammzellen aus dem Knochenmark des Patienten (durch sogenannte autologe Transplantation) oder von einem passenden Spender gewonnen (sogenannte allogene Transplantation). Nach Abschluss der chemotherapeutischen Behandlung werden die blutbildenden Stammzellen injiziert. Diese Stammzellen produzieren dann große Mengen an roten und weißen Blutkörperchen, wodurch das Blut gesund erhalten werden kann und Infektionen besser abgewehrt werden können.

Nicht blutbildende adulte Stammzellen sind innerhalb einzelner Studien bereits mit Erfolg bei Lähmungen nach Wirbelsäulenverletzungen und bei Morbus Parkinson eingesetzt worden. Bei erfolgreichen klinischen Studien konnten Stammzellen aus dem Knochenmark Patienten nach Herzinfarkt oder bei Multipler Sklerose zu einer besseren Regeneration verhelfen. Inzwischen hat man auch in der Haut multipotente Stammzellen entdeckt, die sich potentiell in allen Organgeweben des Menschen entwickeln und hier zur Regeneration beitragen können.

Stammzellforschung

Derzeit gelingt es in Versuchen an Ratten, Gehirntumore durch die Injektion von adulten Stammzellen zu behandeln. Wissenschaftler der Harvard University haben die Zellen gentechnisch so verändert, dass sie eine andere, gleichzeitig injizierte Substanz in einen Krebszellen tötenden Stoff umwandeln. Die Größe der Tumore konnte um 80 Prozent reduziert werden.

Stammzellen scheinen außerdem in der Lage zu sein, Zellen, die durch einen Herzinfarkt geschädigt wurden, zu erneuern. An der Columbia-Presbyterian University ist es gelungen, die Herzfunktion nach einem Infarkt bei Mäusen durch die Injektion von Knochenmark-Stammzellen um 33 Prozent zu verbessern. Das zerstörte Gewebe regenerierte sich zu 68 Prozent wieder. Allerdings wird mittlerweile davon ausgegangen, dass dieses auf parakrine oder andere Effekte der transplantierten Zellen zurückzuführen ist, eine Transdifferenzierung hämatopetischer Stammzellen zu Kardiomyozyten fand jedoch nicht statt. [23]

Die Anwendung autologer Stammzellen bei Herzschäden wird in verschiedenen Herzzentren europaweit in klinischen Studien untersucht. Inwieweit tatsächlich Herzmuskelzellen regeneriert werden ist bisher ungeklärt. In Deutschland wird u. a. am Klinikum der Universität Frankfurt in einer klinischen Studie der Nutzen von Stammzellen für die Regeneration des Herzens erforscht. Adulte Stammzellen werden hier durch Zentrifugation aus Blut gewonnen, durch anschließende Ausbringung auf Fibronectin-Platten kultiviert und auf diesen selektiv angereichert; sie haften auf den Platten an, so dass andere Zellen abgespült werden können. Nach drei Tagen Kultivierung können sie von den Platten abgelöst und – mit Hilfe geeigneter Nährmedien – ins Herz eingebracht werden. In vergleichbarer Weise können adulte Stammzellen auch aus Muskelgewebe aus der Haut gewonnen werden, allerdings dauert hier die Kultivierung nicht drei, sondern ungefähr 20 Tage.

Ein weiterer wichtiger Anwendungsbereich für adulte Stammzellen ist die Regeneration von Knorpel und Knochen. Verschiedene renommierte Forschungsinstitute in Israel, England und Slowenien haben relevante klinische Daten publiziert.

Quellen

  1. Morrison, Shah et al. 1997, Regulatory mechanisms in stem cell biology. Cell 88: 287–298
  2. Beddington und Robertson 1989, An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105: 733–737.
  3. Hubner K et al. 2003, Derivation of oocytes from mouse embryonic stem cells, Science 300: 1251–1256.
  4. Passier und Mummery 2003, Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardivascular Research 58: 324–335.
  5. Nature: Monkey stem cells cloned, Nr. 447, 20. Juni 2007. S. 891.
  6. Die Zeit: Die Klonprüfung vom 15. November 2007.
  7. Stellungnahme zur Verschiebung des Stichtages zum Import von ES-Zellen.
  8. www.bundestag.de Übersicht über die verschiedenen Gesetzentwürfe zur Debatte des Bundestages am 14. Februar 2008
  9. Tagesschau: Bundestag lockert Stammzellgesetz vom 11. April 2008.
  10. http://www.austria.gv.at/DocView.axd?CobId=27204
  11. Witold Jacorzynski und Marcin Kozlowski: Auf dem Weg nach (n)irgendwo: Die polnische Stammzellforschung. In: Wolfgang Bender et. al.: Grenzüberschreitungen: kulturelle, religiöse und politische Differenzen im Kontext der Stammzellenforschung weltweit = Crossing borders. agenda-Verlag, Münster, 2005 (= Darmstädter interdisziplinäre Beiträge 10), S. 471, ISBN 3-89688-258-9
  12. www.3sat.de Schweiz erlaubt Gewinnung embryonaler Stammzellen
  13. http://www.answers.com/topic/stem-cell
  14. California gives go-ahead to stem-cell research, MSNBC, 3.11.2004.
  15. Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663-76. Epub 2006 Aug 10
  16. Frankfurter Allgemeine Zeitung: Wendepunkt der Forschung: Künstliche Herstellung von Stammzellen gelungen, 20. November 2007
  17. Gretchen Vogel: Researchers Turn Skin Cells Into Stem Cells. ScienceNOW, 20. November 2007, sciencemag.org
  18. Frankfurter Allgemeine Zeitung: Reprogrammierte Hautzellen: Der Königsweg zur Stammzelle, 7. Juni 2007
  19. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K.: Induced pluripotent stem cells generated without viral integration. Science. 2008 Nov 7;322(5903):945-9. Epub 2008 Sep 25.
  20. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008 Jan;26(1):101-6. Epub 2007 Nov 30
  21. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR.: Oct4-induced pluripotency in adult neural stem cells. Cell. 2009 Feb 6;136(3):411-9
  22. Gretchen Vogel: Reprogrammed Skin Cells Strut Their Stuff. ScienceNOW, 6. Dezember 2007, sciencemag.org
  23. Murry, Soonpaa et al. 2004, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428: 664–668

Literatur

Bücher

  • Thomas Heinemann / Jens Kersten: Stammzellforschung. Naturwissenschaftliche, rechtliche und ethische Aspekte. Sachstandsberichte des DRZE, Band 4. Freiburg: Verlag Karl Alber 2007, ISBN 978-3-495-48196-7 (weitere Informationen: http://www.drze.de/themen/scopenotes/view_html?key=1139411604.06&la=de)
  • DRZE/ Wissenschaftliche Abteilung im Auftrag des Kompetenznetzwerks Stammzellforschung NRW (Hrsg.): Dossier „Stammzellforschung“. Zentrale nationale und internationale gesetzliche Richtlinien und Übereinkommen sowie Stellungnahmen nationaler und internationaler Institutionen
  • Elmar Brähler (Hrsg.): Vom Stammbaum zur Stammzelle. Reproduktionsmedizin, Pränataldiagnostik und menschlicher Rohstoff (2002)
  • Achim Limbeck: Embryonenschutzgesetz und Forschung an menschlichen Stammzellen. Eine strafrechtliche Untersuchung der Forschung an menschlichen Stammzellen, insbesondere vor dem Hintergrund des Embryonenschutzgesetzes (Taschenbuch 2006). Umfangreiche Wiedergabe des Forschungsstandes sowie der mit der Forschung verbundenen strafrechtlichen Problematik, ISBN 3-9810745-9-9.
  • Eberhard J. Wormer: Mehr Wissen über Stammzellen. Mit Einführungsbeiträgen von Prof. Dr. Werner Kaufmann, Prof. Dr. Detlev Ganten, PD Dr. Gerd Kempermann. Lingen, Köln 2003, ISBN 978-3-937490-00-7
  • Mike S. Schäfer: Wissenschaft in den Medien. Die Medialisierung naturwissenschaftlicher Themen. Wiesbaden: Verlag für Sozialwissenschaften. 2007. ISBN 978-3-531-15592-0
  • Anna M. Wobus, Ferdinand Hucho, Wolfgang van den Daele, Kristian Köchy, Jens Reich, Hans-Jörg Rheinberger, Bernd Müller-Röber, Karl Sperling, Mathias Boysen, Meike Kölsch: Stammzellforschung und Zelltherapie. Stand des Wissens und der Rahmen­be­dingungen in Deutschland. Mit Beiträgen von Christine Hauskeller und Jochen Taupitz. München, 2006. ISBN 978-3-8274-1790-9, ISBN 3-8274-1790-2.
  • Gerd Kempermann: Neue Zellen braucht der Mensch. Die Stammzellforschung und die Revolution der Medizin. Piper Verlag: München 2008, ISBN 978-3-492-05179-8

Aufsätze

  • Michael Feld, Jürgen Hescheler: Stammzellen: Potente Zellen. Spektrum der Wissenschaft, Mai 2003, S. 66–73 (2003), ISSN 0170-2971
  • Michael Groß: Die Insel der Stammzellforscher. Nachrichten aus der Chemie 52(12), S. 1261–1263 (2004), ISSN 1439-9598
  • Lars Grotewold: Wie bleiben Zellen pluripotent? Bilanz eines Vierteljahrhunderts Stammzellforschung. Naturwissenschaftliche Rundschau 58(8), S. 413–419 (2005), ISSN 0028-1050
  • „Stem Cells.“ In: nature Band 441, Heft 7097, vom 29. Juni 2006, S. 1059–1102 (eine sehr ausführliche Übersicht zum Stand der Forschung, auf Englisch)
  • Davor Solter: From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nature Reviews Genetics (7), 319–327, 2006.
  • Peter Löser, Anna M. Wobus: Aktuelle Entwicklungen in der Forschung mit humanen embryonalen Stammzellen. Naturwissenschaftliche Rundschau 60(5), S. 229–237 (2007), ISSN 0028-1050

Weblinks

Biologisches

Gesellschaftliches


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Induzierte pluripotente Stammzelle — Induzierte pluripotente Stammzellen (iPS Zellen) sind pluripotente Stammzellen, die durch künstliche Reprogrammierung von nicht pluripotenten somatischen Zellen entstanden sind. Die Umwandlung wird durch von außen angeregte Expression spezieller… …   Deutsch Wikipedia

  • Stammzelle — Menschliche embryonale Stammzellen. A: undifferenzierte Kolonien. B: Neuron Tochterzelle Als Stammzellen werden allgemein Körperzellen bezeichnet, die sich in verschiedene Zelltypen oder Gewebe ausdifferenzieren können. Je nach Art der Stammzelle …   Deutsch Wikipedia

  • Pluripotente Zelle — Als pluripotent bezeichnet man Stammzellen, welche die Fähigkeit besitzen, sich zu Zellen der drei Keimblätter (Ektoderm, Entoderm, Mesoderm) und der Keimbahn eines Organismus zu entwickeln. Sie können zu jedem Zelltyp eines Organismus… …   Deutsch Wikipedia

  • Adulte Stammzelle — Menschliche embryonale Stammzellen. A: undifferenzierte Kolonien. B: Neuron Tochterzelle Als Stammzellen werden allgemein Körperzellen bezeichnet, die sich in verschiedene Zelltypen oder Gewebe ausdifferenzieren können. Je nach Art der Stammzelle …   Deutsch Wikipedia

  • Embryonale Stammzelle — Menschliche embryonale Stammzellen. A: undifferenzierte Kolonien. B: Neuron Tochterzelle Als Stammzellen werden allgemein Körperzellen bezeichnet, die sich in verschiedene Zelltypen oder Gewebe ausdifferenzieren können. Je nach Art der Stammzelle …   Deutsch Wikipedia

  • SOX2 — SOX 2 (auch Sox2) ist ein Transkriptionsfaktor, der essentiell für die Aufrechterhaltung der Selbsterneuerung von undifferenzierten embryonalen Stammzellen ist. Der Name ist die Abkürzung von „sex determining region Y (SRY) box 2“… …   Deutsch Wikipedia

  • Sox2 — SOX 2 (auch Sox2) ist ein Transkriptionsfaktor, der essentiell für die Aufrechterhaltung der Selbsterneuerung von undifferenzierten embryonalen Stammzellen ist. Der Name ist die Abkürzung von „sex determining region Y (SRY) box 2“… …   Deutsch Wikipedia

  • Philadelphia-Syndrom — Fluoreszenz Bild von Metaphasechromosomen (blau), bei denen eine Translokation t(9;22) (q34;q11) durch FISH mit dem Einsatz zweier genspezifischer Sonden (grün und rot) nachgewiesen wurde. Erkennbar ist die Translokation an den direkt… …   Deutsch Wikipedia

  • Philadelphia chromosom — Fluoreszenz Bild von Metaphasechromosomen (blau), bei denen eine Translokation t(9;22) (q34;q11) durch FISH mit dem Einsatz zweier genspezifischer Sonden (grün und rot) nachgewiesen wurde. Erkennbar ist die Translokation an den direkt… …   Deutsch Wikipedia

  • Erythroblast — Rote Blutkörperchen Erythropoese (auch Erythropoiese) ist der Vorgang der Bildung und Entwicklung der Erythrozyten (rote Blutkörperchen). Sie erfolgt vor der Geburt in Dottersack, Leber, Milz und Knochenmark, nach der Geburt nur noch im… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”