Poisson-Prozess

Poisson-Prozess
Pfade von zwei Poissonprozessen mit konstanter Intensität: einmal 2.4 (blau) und 0.6 (rot). Der blaue Prozess hat eine vier mal höhere Intensität und weist auch mit 30 Sprüngen im gezeichneten Zeitintervall [0,14.9] weit mehr auf als der rote (nur 8). Dies sind fast genau vier mal so viele Sprünge, was auch zu erwarten war.
Pfade von zwei kompensierten zusammengesetzten Poisson-Prozessen. Wie oben ist die Intensität (Sprunghäufigkeit) des blauen Prozesses mit 2.4 genau vier mal so hoch wie die des roten Prozesses. Im gezeichneten Intervall [0,35] springt der blaue Prozess 66 mal (erwartet wären 35*2.4=84), der rote 16 mal, also circa vier mal so oft. Bei beiden Prozessen sind die Sprünge normalverteilt mit Mittel 0.25. Diese Sprünge nach oben werden durch den negativen Drift genau so ausgeglichen (kompensiert), dass beide Prozesse Martingale sind. Da der blaue Prozess öfter nach oben springt, ist sein negativer Drift stärker.

Ein Poisson-Prozess ist ein nach Siméon Denis Poisson benannter stochastischer Prozess. Er ist ein Erneuerungsprozess, dessen Zuwächse poissonverteilt sind.

Die mit einem Poisson-Prozess beschriebenen seltenen Ereignisse besitzen aber typischerweise ein großes Risiko (als Produkt aus Kosten und Wahrscheinlichkeit). Daher werden damit oft im Versicherungswesen zum Beispiel Störfälle an komplexen Industrieanlagen, Flutkatastrophen, Flugzeugabstürze, usw. modelliert.

Inhaltsverzeichnis

Parameter

Die Verteilung der Zuwächse hat einen Parameter λ, dieser wird als Intensität des Prozesses bezeichnet, da pro Zeiteinheit genau λ Sprünge erwartet werden (Erwartungswert der Poissonverteilung ist ebenfalls λ). Die Höhe jedes Sprunges ist eins, die Zeiten zwischen den Sprüngen sind exponentialverteilt. Der Poisson-Prozess ist also ein diskreter Prozess in stetiger (d.h. kontinuierlicher) Zeit.

Definition

Ein stochastischer Prozess mit càdlàg-Pfaden über einem Wahrscheinlichkeitsraum [\Omega;\mathfrak{A};\mathbb{P}] heißt (homogener) Poisson-Prozess P_{\lambda,t}\, mit Intensität \lambda\, und t \in [0;\infty), falls folgende drei Bedingungen erfüllt sind:

Für die Definition des inhomogenen Poisson-Prozesses siehe Poisson-Prozess#Inhomogener Poisson-Prozess.

Eigenschaften

  • Ein Poisson-Prozess ist offenbar ein stochastischer Prozess mit unabhängigen Zuwächsen.
  • Ein homogener Poisson-Prozess ist ein Markow-Prozess.
  • Der Zeitraum zwischen zwei Zuwächsen, also \min \left\{ t \in [0; \infty) | P_{\lambda,t}=n+1 \right\} - \min \left\{ s \in [0; \infty) |  P_{\lambda,s}=n \right\}\;\; n \ge 0 ist exponentialverteilt mit dem Parameter λ.
  • Ist P_{\lambda,t}\, ein Poisson-Prozess, so ist \hat P_{\lambda,t}=P_{\lambda,t+s}-P_{\lambda,s} \;\;  \forall 0<s<t wieder ein Poisson-Prozess. So sind die Zuwächse homogener Poisson-Prozesse stationär.
  • Für den Erwartungswert gilt \operatorname{E}(P_{\lambda,t})=\lambda \cdot t.
  • Für die quadratische Variation gilt < Pλ > t = Pλ,t.
  • Da der Pfad des Prozesses monoton steigt, ist P_{\lambda,t}\, ein Submartingal bezüglich seiner natürlichen Filtrierung.
  • Falls man einen stochastischen Prozess hat, der die drei definierenden Eigenschaften erfüllt, so existiert eine Version des Prozesses mit càdlàg-Pfaden, also ein Poisson-Prozess.
  • \hat P_{\lambda,t}:=P_{\lambda,t}-\operatorname{E}(P_{\lambda,t})=P_{\lambda,t}-\lambda \cdot t heißt kompensierter Poissonprozess und ist ein Martingal bezüglich seiner natürlichen Filtrierung.
  • Ein Poisson-Prozess ist gedächtnislos (Es gilt also P(T>t+s|T>t)=P(T>s)\,, d.h. die Restwartezeit auf den nächsten Sprung ist unabhängig von der bisherigen Wartezeit. (Dies ergibt sich aus der Exponentialverteilung).
  • Die Verteilung der Sprungstellen in einem festen Intervall folgt einer stetigen Gleichverteilung.

Zusammengesetzte Poisson-Prozesse

Ist Nt ein Poisson-Prozess mit Intensität μ sowie  Y_1, Y_2, \ldots unabhängige, identisch verteilte Zufallsvariablen unabhängig von Nt, so wird der stochastische Prozess

 X_t := \sum_{n=1}^{N_t} Y_n

als zusammengesetzter Poisson-Prozess bezeichnet. Wie der ursprüngliche Poisson-Prozess ist auch X ein Sprungprozess unabhängiger Zuwächse und exponential(µ)-verteilter Abstände zwischen den Sprüngen, mit Sprunghöhen, die nach Y verteilt sind.

Es gilt die Formel von Wald (nach dem Mathematiker Abraham Wald),

\mathbb{E}(X_t)=\mathbb{E}(N_t)\mathbb{E}(Y_1)=\mu t\mathbb{E}(Y_1),

obwohl Nt keine Stoppzeit ist!

Für die Berechnung des Erwartungswertes im Falle dass Xt nur abzählbar viele Werte annimmt kann man auf {Nt = k} bedingen und den Satz der totalen Wahrscheinlichkeit benutzen

 \begin{align}
\mathbb{E}(X_t) &= \sum_{x_i\in X_t(\Omega)}x_i\mathbb{P}(X_t=x_i)=\sum_{x_i\in X_t(\Omega)}x_i\sum_{k\geq 0}\mathbb{P}(X_t=x_i|N_t=k)\mathbb{P}(N_t=k)&\\
&=\sum_{k\geq 0}\sum_{x_i\in X_t(\Omega)}x_i\mathbb{P}(\sum_{n=1}^kY_n=x_i)\mathbb{P}(N_t=k)=\sum_{k\geq 0}\mathbb{E}(\sum_{n=1}^k Y_n)\mathbb{P}(N_t=k)&\\
&=\mathbb{E}(Y_1)\sum_{k\geq 0}k\mathbb{P}(N_t=k)=\mu t\mathbb{E}(Y_1)
\end{align}

Inhomogener Poisson-Prozess

In manchen Fällen kann es sinnvoll sein, λ nicht als Konstante, sondern als Funktion der Zeit aufzufassen. λ(t) muss dabei die beiden Bedingungen

  • λ(t) > 0 für alle t\in \mathbb{R}_{+} und
  • \int_{\tau_1}^{\tau_2} \lambda(t)\, \mathrm{d}t <\infty für \tau_1, \tau_2 \in \mathbb{R}_{+}

erfüllen.

Für einen inhomogenen Poisson-Prozess (P_{\lambda(t),t})_{t\ge 0} gilt abweichend von einem homogenen Poisson-Prozess:

  • P_t -P_s \sim \mathcal{P}_{\int_s^t \lambda(u)\, \mathrm{d}u}, wobei \mathcal{P} wieder die Poisson-Verteilung mit dem Parameter \int_s^t \lambda(u)\, \mathrm{d}u bezeichnet.
  • Für den Erwartungswert gilt \operatorname{E}(P_t)=\int_0^t \lambda(u)\, \mathrm{d}u.
  • Für die Varianz gilt ebenfalls \operatorname{Var}(P_t)=\int_0^t \lambda(u)\, \mathrm{d}u.
  • Sind τ1 und τ2 zwei Sprungstellen des inhomogenen Poisson-Prozesses, dann ist \int_{\tau_1}^{\tau_2} \lambda(t)\, \mathrm{d}t exponentialverteilt mit dem Parameter 1.

Cox-Prozess

Ein inhomogener Poisson-Prozess mit stochastischer Intensitätsfunktion λ(t) heißt doppelt stochastischer Poisson-Prozess oder nach dem englischen Mathematiker David Cox auch Cox-Prozess. Betrachtet man eine bestimmte Realisierung von λ(t), verhält sich ein Cox-Prozess wie ein inhomogener Poisson-Prozess. Für den Erwartungswert von Pλ(t),t gilt

\operatorname{E}(P_{\lambda(t),t}) = \operatorname{E}\left(\int_0^t \lambda(u)\, \mathrm{d}u\right).

Anwendungsbeispiele

  • Allgemein:
    • Zählung von gleichverteilten Ereignissen pro Flächen-, Raum- oder Zeitmaß (z.B. Anzahl der Regentropfen auf einer Straße; Anzahl der Sterne in einem Volumen V ist ein dreidimensionaler Poisson-Prozess).
    • Bestimmung der Häufigkeit seltener Ereignisse wie Versicherungsfälle, Zerfallsprozesse, Reparaturaufträge.
  • Bediensysteme:
    • die zufällige Anzahl von Telefonanrufen pro Zeiteinheit.
    • die zufällige Anzahl der Kunden an einem Schalter pro Zeiteinheit.
    • die Zeitpunkte, in denen Anforderungen (Personen, Jobs, Telefonanrufe, Heap,...) bei einem Bediener (Bank, Server, Telefonzentrale, Speicherverwaltung, ... ) eingehen.
  • Fehler, Ausfälle, Qualitätskontrolle:
    • die zufällige Anzahl von nichtkeimenden Samenkörnern aus einer Packung.
    • die Orte, an denen ein Faden Noppen hat.
    • Anzahl der Pixelfehler auf einem TFT-Display.
    • Anzahl der Schlaglöcher auf einer Landstraße.
    • Anzahl der Druckfehler in einem Buch.
    • Anzahl der Unfälle pro Zeiteinheit an einer Kreuzung.
    • Auf [1] wird der Versuch unternommen, die Abfolge von Selbstmorden am Massachusetts Institute of Technology als Poisson-Prozess zu modellieren.
  • Physik:
    • die Zeitpunkte, in denen eine radioaktive Substanz ein α-Teilchen emittiert.
    • zufällige Anzahl der α-Teilchen, die von einer radioaktiven Substanz in einem bestimmten Zeitraum emittiert werden.
  • Versicherungsmathematik:
    • die Zeitpunkte von Großschäden einer Versicherung. In der Finanz- und Versicherungsmathematik wird das Auftreten von zu deckenden Schäden üblicherweise durch einen zusammengesetzten Poisson-Prozess beschrieben, bei dem die einzelnen, unabhängig voneinander auftretenden Schäden nach Y verteilt sind. Versieht man diesen Schadensprozess dann noch mit einem deterministischen, negativen Drift (Versicherungsbeiträge), so erhält man einen Vermögensprozess des Versicherungsunternehmens. Dem schließen sich Fragestellungen an wie: Wie wahrscheinlich ist es, dass der Vermögensprozess einen gewissen Schwellwert x, das heißt die Rücklagen der Versicherung, überschreitet und damit einen Konkurs erleidet? Wie stark muss der negative Drift beziehungsweise der Beitragssatz sein, um die Wahrscheinlichkeit eines Konkurses unter eine vorgegebene Schwelle zu drücken?
  • Finanzmathematik:
    • Modelle für Kurse von Aktien, wobei auch Sprünge erlaubt sind. Hierfür werden zwar oft Lévy-Prozesse verwendet, aber da unendliche Aktivität oft schwer zu messen ist, werden auch zusammengesetzte Poissonprozesse verwendet.
    • Kreditrisikomodelle helfen CDS -Spreads und andere Kreditderivate zu bewerten und modellieren.

Literatur

Ross, Sheldon M.: Stochastic Processes. Wiley, New York.


Wikimedia Foundation.

См. также в других словарях:

  • Poisson-Prozess —   [pwa sɔ̃ ; nach S. D. Poisson], punktueller stochastischer Prozess, bei dem die Wahrscheinlichkeit eines Ereignisses innerhalb eines beliebigen Zeitintervalls durch die Poisson Verteilung gegeben ist; die Wahrscheinlichkeiten in nicht… …   Universal-Lexikon

  • Poisson — ist der Name von David Poisson (* 1982), französischer Skirennläufer Georges Poisson (* 1924), Architektur und Literaturhistoriker Jeanne Antoinette Poisson, marquise de Pompadour (1721–1764), „Madame de Pompadour“ Siméon Denis Poisson… …   Deutsch Wikipedia

  • Poisson Statistik — Die Poisson Verteilung ist eine diskrete Wahrscheinlichkeitsverteilung, die beim mehrmaligen Durchführen eines Bernoulli Experiments entsteht. Letzteres ist ein Zufallsexperiment, das nur zwei mögliche Ergebnisse besitzt (z. B. „Erfolg“ und… …   Deutsch Wikipedia

  • Poisson Verteilung — Die Poisson Verteilung ist eine diskrete Wahrscheinlichkeitsverteilung, die beim mehrmaligen Durchführen eines Bernoulli Experiments entsteht. Letzteres ist ein Zufallsexperiment, das nur zwei mögliche Ergebnisse besitzt (z. B. „Erfolg“ und… …   Deutsch Wikipedia

  • Poisson-Verteilung — Wahrscheinlichkeitsfunktion der Poisson Verteilung für λ = 1 (blau), λ = 5 (grün) und λ = 10 (rot) Die Poisson Verteilung (benannt nach dem Mathematiker Siméon Denis Poisson) ist eine diskrete Wahrscheinlichkeitsverteilung, die beim mehrmaligen… …   Deutsch Wikipedia

  • Poisson-Verteilung — I Poisson Verteilung   [pwa sɔ̃ ; nach S. D. Poisson], Grenzfall der Binomialverteilung B (n, p), bei der die Wahrscheinlichkeit p eines bestimmten Ereignisses sehr klein, die Anzahl n der unabhängigen Wiederholungen aber sehr groß ist (»Gesetz… …   Universal-Lexikon

  • Cox-Prozess — Pfade von zwei Poissonprozessen mit konstanter Intensität: einmal 2.4 (blau) und 0.6 (rot). Der blaue Prozess hat eine vier mal höhere Intensität und weist auch mit 30 Sprüngen in gezeichneten Zeitintervall [0,14.9] weit mehr auf als der rote… …   Deutsch Wikipedia

  • Hard-core-Prozess — Beispiel eines zweidimensionalen Hard core Punktfeldes. Der Mindestabstand zwischen den Punkten wird durch die einander nicht überlappenden Kreise veranschaulicht; der Durchmesser der Kreise entspricht dem Mindestabstand. Ein Hard core Prozess… …   Deutsch Wikipedia

  • Levy-Prozess — Die Klasse der Lévy Prozesse, benannt nach dem französischen Mathematiker Paul Lévy (1886 1971), fasst eine große Menge von stochastischen Prozessen zusammen, die durch die gemeinsame Eigenschaft der stationären, unabhängigen Zuwächse vereint… …   Deutsch Wikipedia

  • Lévy-Prozess — Lévy Prozesse, benannt nach dem französischen Mathematiker Paul Lévy (1886 1971), sind stochastische Prozesse mit stationären, unabhängigen Zuwächsen. Sie beschreiben die zeitliche Entwicklung von Größen, die zwar zufälligen, aber über die Zeit… …   Deutsch Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»