Principia Mathematica

Principia Mathematica
Titelseite einer Principia Mathematica-Ausgabe

Principia Mathematica („mathematische Prinzipien“ bzw. „Mathematische Grundlagen“) ist ein Werk in drei Bänden über die Grundlagen der Mathematik von Bertrand Russell und Alfred North Whitehead, erstmals erschienen zwischen 1910 und 1913. Die Principia Mathematica stellen den Versuch dar, alle mathematischen Wahrheiten aus einem wohldefinierten Satz von Axiomen und Schlussregeln (Inferenzregeln der symbolischen Logik) herzuleiten, wie es durch das Hilbertprogramm vorgeschlagen wurde. Auf mehreren Hundert Seiten wird zunächst ein Repertoire aus Begriffen und Symbolen dargelegt, welches das Fundament zur späteren Herleitung der Arithmetik bilden. Die Herleitung der Mathematik aus der Logik widerlegte einige bis dahin verbreitete Anschauungen über das Wesen mathematischer Erkenntnisse. Russell und Whitehead zeigten, dass diese weder empirisch noch synthetisch apriorisch waren (letzteres hatte Kant angenommen), sondern sprachlicher Natur und damit formallogisch begründbar, also analytisch apriorisch.

Inhaltsverzeichnis

Behandelte Themengebiete

Die Principia behandeln nur die Mengentheorie, die Kardinalzahlen, die Ordinalzahlen und die Reellen Zahlen; tiefergehende Sätze aus der reellen Analysis sind nicht enthalten, aber gegen Ende des dritten Bandes wird klar, dass die gesamte bekannte Mathematik im Prinzip aus dem vorgestellten Formalismus entwickelt werden kann.

Vorläufer

Eine wichtige Inspiration und Grundlage der Principia Mathematica bildet Gottlob Freges Arithmetik von 1893, deren Basis ein Mengenkalkül ist, in dem Russell die Russellsche Antinomie entdeckte, die sich aus der Menge aller Mengen, die sich nicht selbst enthalten ergibt. Diesen Widerspruch und andere Widersprüche der naiven Mengenlehre löste er durch seine Typentheorie von 1908, die zur Grundlage der Principia Mathematica wurde.[1]

Ein weiteres wichtiges Fundament der Prinicipia Mathematica ist die Formelsammlung (Formulaire) von Giuseppe Peano in der Fassung von 1903; aus ihr entnahm Russell die symbolische Notation und viele Formeln (bereits auch in seiner Typentheorie).

Folgen

Es blieb aber zunächst unklar, ob dieses System von Axiomen und Ableitungsregeln widerspruchsfrei ist und ob sich alle wahren Sätze auf diese Weise herleiten ließen. Dass dies nicht möglich ist, zeigte einige Jahre später Kurt Gödel mit seinem Unvollständigkeitssatz, den er in seiner Arbeit Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. darlegte.

Literatur

  • Principia Mathematica to *56. Cambridge University Press; 2. Aufl. 1997. ISBN 978-0-521-62606-4
  • Principia Mathematica. 3 Bände. Cambridge University Press 2. Aufl. 1962. ISBN 978-0-521-06791-1
  • Alfred North Whitehead, Bertrand Russell, Kurt Gödel: Principia Mathematica. Vorwort und Einleitungen. Suhrkamp 2008. ISBN 978-3-518-28193-2
  • Esther Ramharter, Georg Rieckh: Principia Mathematica auf den Punkt gebracht. öbvhpt 2007. ISBN 978-3-209-05547-7

Weblinks

Referenzen

  1. Russell: Mathematical logic as based on the theory of types, in: American Journal of Mathematics 30 (1908), Seite 222-262.

Wikimedia Foundation.

См. также в других словарях:

  • Principia mathematica — („mathematische Prinzipien“ bzw. „Mathematische Grundlagen“) ist ein Werk in drei Bänden über die Grundlagen der Mathematik von Bertrand Russell und Alfred North Whitehead, erstmals erschienen zwischen 1910 und 1913. Die Principia Mathematica… …   Deutsch Wikipedia

  • Principia Mathematica — Saltar a navegación, búsqueda Para el artículo sobre la obra de Isaac Newton conteniendo las leyes básicas de la física ver Philosophiae Naturalis Principia Mathematica. Principia Mathematica es un conjunto de tres libros con las bases de la… …   Wikipedia Español

  • Principia Mathematica — For Isaac Newton s book containing basic laws of physics, see Philosophiæ Naturalis Principia Mathematica. The title page of the shortened version of the Principia Mathematica to *56. The Principia Mathematica is a three volume work on the… …   Wikipedia

  • Principia Mathematica — Pour l œuvre d Isaac Newton, consultez Philosophiae Naturalis Principia Mathematica. Les Principia Mathematica sont une œuvre en trois volumes d Alfred North Whitehead et Bertrand Russell, publiés en 1910 1913. Cette œuvre a pour sujet les… …   Wikipédia en Français

  • Principia Mathematica — Para el artículo sobre la obra de Isaac Newton conteniendo las leyes básicas de la física ver Philosophiae Naturalis Principia Mathematica. Principia Mathematica es un conjunto de tres libros con las bases de la matemática escritos por Bertrand… …   Enciclopedia Universal

  • Philosophiæ Naturalis Principia Mathematica —   Title page of Principia , first edition (1687) Original title …   Wikipedia

  • Philosophiae Naturalis Principia Mathematica — Philosophiae Naturalis Principia Mathematica, oft auch Principia Mathematica oder einfach Principia genannt, ist das Hauptwerk von Isaac Newton. Der lateinische Titel bedeutet übersetzt Mathematische Prinzipien der Naturphilosophie. Inha …   Deutsch Wikipedia

  • Philosophiae naturalis principia mathematica — Philosophiae Naturalis Principia Mathematica, oft auch Principia Mathematica oder einfach Principia genannt, ist das Hauptwerk von Sir Isaac Newton. Der lateinische Titel bedeutet übersetzt Mathematische Prinzipien der Naturphilosophie.… …   Deutsch Wikipedia

  • Philosophiae Naturalis Principia Mathematica — Pour l œuvre de Alfred North Whitehead et Bertrand Russell, consultez Principia Mathematica. Philosophiae Naturalis Principia Mathematica (latin pour Principes mathématiques de philosophie naturelle), souvent abrégé en Principia ou Principia… …   Wikipédia en Français

  • Writing of Principia Mathematica — Isaac Newton composed Principia Mathematica during 1685 and 1686.Authoring Principia Newton s major work mdash; Principia Mathematica In the other letters written in 1685 and 1686, he asks Flamsteed for information about the orbits of the moons… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»