Ramjet


Ramjet
Von einem Staustrahltriebwerk angetriebener Flugkörper der NASA.
Triebwerkstests in den USA 2002.

Ein Staustrahltriebwerk (engl. Ramjet, als Überschallausführung Scramjet) ist ein luftatmendes Strahltriebwerk, bei dem die Kompression der dem Verbrennungsraum zugeführten Luft nicht durch bewegliche Teile wie Verdichter erfolgt, sondern allein durch Ausnutzung der hohen Strömungsgeschwindigkeit des Gases selbst.

Staustrahltriebwerke können daher keinen Standschub erzeugen und funktionieren erst bei hohen Geschwindigkeiten. Zum Start werden meist Raketen-Booster verwendet.

Gegenüber Raketentriebwerken haben sie den Vorteil der höheren Treibstoffeffizienz, da als Oxidator der Sauerstoff aus der Luft dient, der nicht im Treibstoff mitgeführt werden muss. Im Weltraum allerdings können sie nicht eingesetzt werden.

Triebwerke nach diesem Funktionsprinzip sind schon Anfang des 20. Jahrhunderts von René Lorin beschrieben worden, sind aber weiterhin selten und wurden bisher vor allem bei Luftabwehrraketen wie der SA-4 Ganef und SA-6 Gainful, Bomarc, der Luft-Luft-Rakete MBDA Meteor oder dem Marschflugkörper Navaho praktisch eingesetzt.

Inhaltsverzeichnis

Grundlage

Das Funktionsprinzip und der grundsätzliche mechanische Aufbau dieser Triebwerke ist verglichen mit Gasturbinen-basierten Antrieben sehr einfach. Die Beherrschung der Aerodynamik bei den Operationsgeschwindigkeiten (neuerdings bis zur zehnfachen Schallgeschwindigkeit) ist jedoch anspruchsvoll.

Grundsätzlich gewinnt ein Strahltriebwerk seinen Schub durch die Verbrennung von Treibstoff. Für eine effektive Verbrennung ist aber eine Verdichtung der zugeführten Luft notwendig. Bei geringen Fluggeschwindigkeiten wird meist ein Turbofan-Triebwerk benutzt, das einen mehrstufigen Axialverdichter verwendet.

Bei höheren Fluggeschwindigkeiten ergibt sich durch die Stauwirkung des Triebwerks jedoch eine konkurrierende Druckerhöhung, wodurch der Anteil des Axialverdichters an der Druckentwicklung abnimmt. Bei Mach 1 sind es jeweils ca. 50 %, bis Mach 3 sinkt der Anteil auf ca. 0 % ab. Bei mehrfacher Schallgeschwindigkeit nimmt somit der Wirkungsgrad konventioneller Gasturbinen-Strahltriebwerke ab, während andererseits der Staudruck bereits zu einer ausreichenden Luftkompression führt.

Auf diesem Prinzip beruhen Staustrahltriebwerke, die jedoch nicht im Stand oder bei niedrigen Geschwindigkeiten arbeiten, da dann mangels Staudruck keine Kompression erfolgt. Zum Erreichen ihrer Operationsgeschwindigkeit müssen sie daher stets durch ein Hilfstriebwerk oder andere Mittel beschleunigt werden. Ihr optimales Leistungsspektrum beginnt dort, wo auf Gasturbinen basierende Strahltriebwerke ihr Optimum verlassen.

Zu den Vorteilen gegenüber Turbofans gehören das niedrige Gewicht, die Verschleißarmut und die Fähigkeit, unterschiedliche Brennstoffe zu verwenden. Gegenüber Raketentriebwerken besteht der Vorteil in dem höheren Wirkungsgrad, da der Oxidator nicht im Treibstoff mitgeführt werden muss, sondern der Luftsauerstoff genutzt wird.

Funktion

Querschnitt: Links wird die Luft hineingedrückt, in der Mitte der Treibstoff zugeführt und rechts der Schub erzeugt.

Das Staustrahltriebwerk besteht im Wesentlichen aus einer Röhre, in deren Mitte sich an der Eintrittsöffnung der Diffusor befindet. Dies ist ein Konus, dessen Durchmesser in Richtung der Luftströmung zunächst zunimmt, wodurch sich für den Luftstrom eine Verengung und damit – für überschallschnelle Strömungen – eine Verringerung der Strömungsgeschwindigkeit ergibt. Der Druck steigt und sorgt nun für die Kompression (hohe Strömungsgeschwindigkeit ⇒ niedriger Druck; niedrige Strömungsgeschwindigkeit ⇒ hoher Druck).

Nun folgt der Verbrennungsraum, an dem sich der Diffusor wieder verjüngt. Der erhitzten Luft wird hier Kraftstoff zugeführt, der sich von selbst entzündet und eine Expansion des Gases herbeiführt. Das heiße Gas tritt dann nach hinten aus, wird durch die Entspannung in der Düse beschleunigt und in der Strömungsrichtung möglichst axial ausgerichtet. Dies ermöglicht so die Nutzung des Schubs an der Brennkammervorderseite.

Die Leistungsabgabe erfolgt ausschließlich durch den rückwärtigen Gasaustritt, eine direkte Leistungsabführung, die bei Wellentriebwerken zum Betrieb des Kompressors benötigt wird, findet nicht statt. Die nötige Leistung wird der Kompression indirekt zugeführt, indem das Triebwerk eine ausreichende Geschwindigkeit aufrecht erhält.

Die notwendige Kompression für eine effektive Verbrennung ist erst ab einer Luftgeschwindigkeit von etwa 1.000 km/h gegeben. Einen optimalen Lauf gewährleisten Staustrahltriebwerke erst ab doppelter Schallgeschwindigkeit (oberhalb von Mach 2 bzw. 2.400 km/h).

Unter-/Überschall

Anhand der Kompression sind zwei Varianten von Staustrahltriebwerken unterscheidbar:

Unterschallverbrennung

Im Ramjet wird bei der Kompression die einströmende Luft unter die Schallgeschwindigkeit abgebremst, gefolgt von einer Unterschallverbrennung. Um die Einströmgeschwindigkeit in die Brennkammer auf Unterschall zu verringern und damit den Druck zu erhöhen, wird im Bereich des Triebwerkseinlaufs ein Diffusor mit divergenter Formgebung angeordnet. Es wird dieselbe Luftmasse, die das Triebwerk in einer Zeit t durchläuft, auch in der Zeit t ausgestoßen. Hier steigt die Geschwindigkeit des Mediums, wenn sich der Rohrquerschnitt verringert: Eine der Brennkammer folgende Lavaldüse beschleunigt das ausströmende Gas anschließend wieder auf Überschall. Der Arbeitsbereich dieses Triebwerkstyps liegt bei Fluggeschwindigkeiten bis Mach 5 mit Kohlenwasserstoffen und bis Mach 7 mit Wasserstoff.

Angewendet wurde diese Technik erstmals bei der Lockheed X-7 in den 1950er Jahren.

Überschallverbrennung im Scramjet

Beim Scramjet (Supersonic Combustion RamjetÜberschallverbrennungs-Ramjet) wird die einströmende Luft bei der Kompression nicht unter die Schallgeschwindigkeit abgebremst, und auch die Verbrennung findet als Überschallverbrennung statt. Der Arbeitsbereich von Scramjet-Triebwerken liegt dann zwischen Mach 5 und (projiziert) Mach 15.

Entscheidend für die Gasbeschleunigung ist hier die Dichte ρ des Gases: Im Gegensatz zur Lavaldüse des Ramjet führt hier eine Erweiterung des Düsendurchmessers zu einer Beschleunigung des austretenden Mediums. Grund dafür ist die nun freie Entspannung des Mediums, wodurch eine größere Expansion und somit auch eine höhere Austrittsgeschwindigkeit erzielt werden kann.

Scramjet-Triebwerke werden über ihre gesamte Länge hinweg überschallschnell (> Mach 3) durchströmt und müssen den resultierenden deutlich höheren Temperaturen standhalten können. So entsteht z. B. bei einer Geschwindigkeit von Mach 8, abhängig von der Luftdichte, eine Temperatur von 3000 bis 4000 °C.

Ein weiteres Problem der Überschallverbrennung besteht in der kurzen Verweilzeit der Luft im Triebwerk. Dadurch kann sich der Treibstoff schlechter mit der Luft und dem darin enthaltenen Sauerstoff durchmischen. Dieses Problem ist durch geeignete Maßnahmen bei der Triebwerksausgestaltung zu lösen.

Der Scramjet besitzt weiterhin einen Isolator, ein Rohrstück mit konstantem Querschnitt, um die bei Geschwindigkeiten über Mach 3 drohenden ungewollten Verdichtungsstöße und Blockaden zu verhindern.

Scramjet-Flüge

Der erste Nachweis von Überschallverbrennung in einem Flugkörper gelang am 30. Juli 2002 mit dem Versuch HyShot2 durch die HyShot Group der University of Queensland, Australien. Im Gegensatz zur X-43 der NASA war der hierbei verwandte Scramjet allerdings nicht in einen aerodynamischen Flugkörper integriert. Das Versuchstriebwerk wurde durch eine zweistufige Boosterrakete auf einer parabelförmigen Bahn in die Höhe geschossen, um beim Herabfallen in ca. 30 km Höhe den eigentlichen Versuch durchzuführen. Die erreichte Fluggeschwindigkeit betrug ca. Mach 7,6.

Die US-amerikanische NASA führte ihre Versuche mit dem X-43A-Flugkörper dagegen auf horizontalen Flugbahnen durch. Am 26. März 2004 erreichte der unbemannte Flugkörper mit Hilfe des Scramjet-Antriebs die siebenfache Schallgeschwindigkeit und hielt sie für einige Sekunden. Die nötige Operationsgeschwindigkeit für das Scramjet-Triebwerk wurde durch eine Pegasus-Trägerrakete erreicht.

Am 16. November 2004 erreichte die NASA mit ähnlichem Versuchsaufbau knapp Mach 10. Dabei wurde die Pegasus-Trägerrakete mit der X-43A von einer B-52 in 12 km Höhe aus gestartet. Der eigentliche Flug der X-43A dauerte knapp 20 Sekunden auf über 33 km Höhe und erreichte Mach 9,8 (etwa 11.000 km/h oder 3,05 km/s).

Sonderformen

Im Projekt Pluto wurde Ende 1950er Jahre mit hohem Aufwand ein nuklearer Ramjet entwickelt, der im Tiefflug mit Mach 3 eine Anzahl von H-Bomben in die UdSSR tragen sollte. Das Triebwerk wurde 1961 erfolgreich getestet, das Projekt jedoch aus politischen Gründen eingestellt, bevor eine Flugerprobung begann.

Das Aufklärungsflugzeug Lockheed SR-71 besitzt Pratt & Whitney J58 Triebwerke, die als variable-cycle-Triebwerk Turbo- und Ramjet-Funktionen in sich vereinen: Bei niedrigen Geschwindigkeiten wird allein die Turbojet-Funktion genutzt, ab Mach 3 wird durch Verschiebung des Einlasskonus ein Teil des Luftstromes an den Turbinen vorbei als Ramjet genutzt, bei der Höchstgeschwindigkeit von Mach 3,2 entstehen dann 80 % des Schubs auf diese Weise.

Die US-Konzerne Pratt & Whitney und United Technologies haben im Rahmen des FALCON-Programms ein Triebwerk entwickelt, das sowohl Unter- als auch Überschallverbrennung in einem einzelnen Triebwerk ermöglicht. Es kann im Geschwindigkeitsbereich von Mach 2,5 bis Mach 6 arbeiten, wobei der letzte Test im September 2007 stattfand.

Siehe auch

Literatur

Heiser, W. H. and Pratt, D. T., “Hypersonic Airbreathing Propulsion”, Education Series, AIAA, 1994, ISBN 1-56347-035-7

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • ramjet — 1942, from RAM (Cf. ram) (v.) + JET (Cf. jet) (v.) …   Etymology dictionary

  • Ramjet — A ramjet, sometimes referred to as a stovepipe jet, or an athodyd, is a form of jet engine that contains no major moving parts. Unlike most other airbreathing jet engines, ramjets have no rotary compressor at the inlet, instead, the forward… …   Wikipedia

  • ramjet — /ram jet /, n. a jet engine operated by the injection of fuel into a stream of air compressed by the forward speed of the aircraft. Also called ramjet engine. [1940 45; RAM + JET1] * * * Air breathing jet engine that operates with no major moving …   Universalium

  • ramjet — /ˈræmdʒɛt/ (say ramjet) noun a jet propulsion engine in which the stream of air drawn in for combustion is compressed by the forward speed of the aircraft. {ram1 + jet1} …   Australian English dictionary

  • ramjet — tiesiasrovis reaktyvinis variklis statusas T sritis Gynyba apibrėžtis Reaktyvinis variklis, neturintis kompresoriaus ir turbinos. Jo veikimas priklauso nuo suslėgto oro, gaunamo varikliui judant į priekį. atitikmenys: angl. ramjet pranc.… …   NATO terminų aiškinamasis žodynas

  • ramjet — A jet propulsion engine containing neither compressor nor turbine which depends for its operation on the air compression accomplished by the forward motion of the engine. See also pulsejet …   Military dictionary

  • ramjet — noun Date: 1942 a jet engine that consists essentially of a hollow tube without mechanical components and depends on the aircraft s speed of flight to compress the air which is supplied to a burner from which hot gases are discharged rearward …   New Collegiate Dictionary

  • Ramjet — Statoréacteur Pour consulter des articles plus généraux, voir : Propulsion des aéronefs et Moteur à réaction. Essai dans un laboratoire de la NASA d un statoréacteur en poussée maximale. Le statoréacteur est un système de propulsion par… …   Wikipédia en Français

  • ramjet — noun A jet engine in which forward motion forces air into an inlet, compressing it (as opposed to having a pump type device compressing the air for combustion with fuel), and where combustion is subsonic. See Also: jet engine, pulsejet …   Wiktionary

  • ramjet — ram·jet || ræmdÊ’et n. jet engine that operates by injecting fuel into the compressed air created within the engine during flight …   English contemporary dictionary