- Restklassenkörper
-
Restklassenkörper spielen in verschiedenen Bereichen der Algebra und Zahlentheorie eine wichtige Rolle. In ihrer einfachsten Form sind sie die mathematische Abstraktion des Restes bei der Division durch eine Primzahl; in einer komplizierteren Fassung geben sie die lokale Struktur eines geometrischen Objektes in einem Punkt an.
Restklassenkörper modulo einer Primzahl
Ist p eine Primzahl, so ist der Restklassenring
ein Körper, genauer ein endlicher Körper mit p Elementen. Er wird Restklassenkörper modulo p genannt und üblicherweise mit
bezeichnet; man beachte jedoch, dass es auch endliche Körper
,
gibt, die mit den jeweiligen Restklassenringen nichts zu tun haben.
Für weitere Details zu endlichen Körpern siehe endlicher Körper.
Restklassenkörper lokaler Ringe
Ist A ein lokaler Ring mit maximalem Ideal
, so heißt der Faktorring
(der als Faktorring eines maximalen Ideals ein Körper ist) der Restklassenkörper von A.
Ist K ein diskret bewerteter Körper mit Bewertungsring
und uniformisierendem Element π, dann bezeichnet man
als Restklassenkörper von K.
Restklassenkörper von Punkten auf Schemata
Ist X ein Schema und
ein Punkt, so heißt der Restklassenkörper des lokalen Ringes
der Restklassenkörper von X in x und wird häufig mit κ(x) bezeichnet.
Ist X ein Schema über einem Körper k, so sind alle Restklassenkörper von X Körpererweiterungen von k. Ist X / k lokal endlichen Typs und
ein abgeschlossener Punkt, so ist κ(x) eine endliche Erweiterung von k; dies ist im Wesentlichen die Aussage des hilbertschen Nullstellensatzes.
Wikimedia Foundation.
См. также в других словарях:
Bewertungstheorie — Im mathematischen Teilgebiet der Bewertungstheorie geht es um Verallgemeinerungen der Frage, durch welche Potenz einer festen Primzahl eine natürliche Zahl teilbar ist. Inhaltsverzeichnis 1 p Bewertung 1.1 p ganze und S ganze Zahlen 2 Diskr … Deutsch Wikipedia
Körper (Algebra) — Ein Körper ist im mathematischen Teilgebiet der Algebra eine ausgezeichnete algebraische Struktur, in der die Addition, Subtraktion, Multiplikation und Division wie bei den „normalen“ reellen Zahlen durchgeführt werden können. Die Bezeichnung… … Deutsch Wikipedia
Verzweigte Körpererweiterung — Verzweigung ist ein mathematischer Begriff, der die Gebiete Algebra, algebraische Geometrie und komplexe Analysis miteinander verbindet. Inhaltsverzeichnis 1 Namengebendes Beispiel 2 Verzweigung im Kontext von Erweiterungen bewerteter Körper 2.1… … Deutsch Wikipedia
Verzweigungspunkt — Verzweigung ist ein mathematischer Begriff, der die Gebiete Algebra, algebraische Geometrie und komplexe Analysis miteinander verbindet. Inhaltsverzeichnis 1 Namengebendes Beispiel 2 Verzweigung im Kontext von Erweiterungen bewerteter Körper 2.1… … Deutsch Wikipedia
Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Formale Potenzreihe — Formale Potenzreihen in der Mathematik sind ein Analogon zu den Potenzreihen der Analysis, ignorieren jedoch im Gegensatz zu diesen sämtliche Konvergenzfragen. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 3 Weiterführende Themen … Deutsch Wikipedia
Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Galois-Feld — Ein endlicher Körper oder Galoiskörper ist eine Menge mit einer endlichen Anzahl von Elementen, auf der die Grundoperationen Addition, Subtraktion, Multiplikation und Division definiert sind. Die Bezeichnung Galoiskörper leitet sich vom Namen des … Deutsch Wikipedia
Galois-Körper — Ein endlicher Körper oder Galoiskörper ist eine Menge mit einer endlichen Anzahl von Elementen, auf der die Grundoperationen Addition, Subtraktion, Multiplikation und Division definiert sind. Die Bezeichnung Galoiskörper leitet sich vom Namen des … Deutsch Wikipedia