Trafoschaltrelais

Trafoschaltrelais

Ein Transformatorschaltrelais (kurz Trafoschaltrelais oder TSR) ist eine elektronische Baugruppe, die den erhöhten Einschaltstrom beim Einschalten eines Transformators mit Eisenkern vermeidet. Sie dient zugleich als Relais zum Zu- und Abschalten des Transformators und besitzt hierfür einen Steuereingang.

Inhaltsverzeichnis

Grundlagen

Bei Einsatz eines Trafoschaltrelais fließt beim Einschalten kein erhöhter Einschaltstrom. Das wird erreicht, indem vor dem Einschalten eine Vormagnetisierung des Transformatorkerns mittels kleiner, unipolarer Spannungszeitflächen erfolgt und dann zum geeigneten Zeitpunkt gegenphasig voll eingeschaltet wird. Die Magnetisierung wird dabei mit dem Vormagnetisieren auf den normalen Betriebsumkehrpunkt der Induktion B auf der Hysteresekurve gebracht und dann voll eingeschaltet.

Ursache des erhöhten Einschaltstromes eines Transformators ist dessen Remanenz (Restmagnetisierung) sowie der Einschaltzeitpunkt: Liegt dieser zu Beginn einer Spannungs-Halbwelle und trifft die Stromflussrichtung überdies mit der Richtung der Restmagnetisierung zusammen, gerät der Eisenkern in die magnetische Sättigung, sodass der Strom stark ansteigt. Die entstehende unsymmetrische Magnetisierung wird erst im Verlauf mehrere Halbwellen über den Kupferwiderstand der Primärwicklung und den Netz-Innenwiderstand abgebaut.

Der Einschaltstrom wird im Fall der Eisensättigung nur durch Kupfer- und Netzinnenwiderstand begrenzt. Er ist bei verlustarmen Transformatoren daher besonders groß. Trafos mit geringen Eisenverlusten behalten überdies eine besonders hohe Remanenzinduktion nach dem Ausschalten. Der Einschaltstrom kann das bis über 80-fache des Nennstroms erreichen. Der Stromstoß kann ohne Einschaltstrombegrenzer nur mit trägen und im Nennstrom zu großen Sicherungen beherrscht werden, die oft ein Auslösen der übergeordneten Schutzeinrichtung bewirken beziehungsweise den Transformator nicht ausreichend schützen können.

Aufbau und Funktion

Verlauf von Spannung (oben) und Strom (unten) beim Einschalten eines Transformators mit einem Trafoschaltrelais. Es fließt nur der Leerlaufstrom von 200 mA peak

Trafoschaltrelais bestehen aus einem Halbleiterschalter (Triac) mit Ansteuerung und einem mechanischen Relais, welches den Halbleiterschalter nach der Einschaltphase überbrückt.

Herkömmliche und weithin bekannte Softstarteinrichtungen dimmen einfach mit einem bipolaren Phasenanschnitt von kleinen bis zu großen Stromflusswinkeln ausgehend immer weiter auf, bis die Last mit der vollen Netzspannung betrieben wird. Gerade leerlaufende Trafos mit geringen Verlusten haben mit diesem Dimmen Schwierigkeiten, weil durch die geringen Leerlaufströme das Stellglied, Triac, Thyristoren nicht symmetrisch auf den Haltestrom einrasten können, dann nach einer Seite hin ein Spannungszeitflächen-Übergewicht bilden, (Spannungszeitfläche = zeitlich integrierte Spannungskurve, die den magnetischen Fluss ergibt) und den Trafo damit in die Sättigung treiben. Das Trafoschaltrelais arbeitet dagegen jedoch mit nur unipolaren Spannungszeitflächen und erzwingt damit von Anfang an regelrechte Leerlaufströme.

Die Vormagnetisierung und Remanenz des Transformator-Kernes wird zu Einschaltbeginn durch Impulse nur einer Polarität (siehe Bild: Spannungsverlauf zu Beginn) in eine Richtung gebracht. Nach einer vorbestimmten Anzahl von Pulsen [1] oder bei Detektieren der Sättigung [2] wird der Transformator zu Beginn einer entgegengesetzt gerichteten Spannungshalbwelle voll eingeschaltet (sinusförmiger Spannungsverlauf im Bild oben). Beides wird durch eine Steuerung koordiniert, die die Nulldurchgänge der Netzspannung detektiert.

Netzspannung, unipolare Spannungszeitflächen, Magnetflussdichte, Feldstärke, Strom, Volleinschalten, beim TSR-Einschaltverfahren an Trafo mit R-Last

Nebenstehendes Bild beschreibt das TSR-Einschaltverfahren und zeigt auch den Magnetfluss. Der gemessene Trafo hat zu Beginn eine Remanenz von -0,95 T. Die einzelnen unipolaren Spannungszeitflächen transportieren den Magnetfluss Schritt für Schritt bis zum Endpunkt der Hysteresekurve. Anschließend wird voll eingeschaltet und so der Einschaltstrom nicht nur begrenzt, sondern ein Stromstoß sogar vollkommen vermieden. Beachtenswert ist das Verhalten des Magnetflusses, erkenntlich an der Kurve der Flussdichte B. Ab dem Erreichen der positiven Maximal-Remanenz wird der Magnetfluss von der nächsten Spannungszeitfläche in den Endpunkt der Hysteresekurve gefahren und dann fällt der Magnetfluss in der Pause wieder auf die positive Maximal-Remanenz zurück. Der Eisenkern reagiert also innerhalb der Remanenz-Grenzen zuerst integrierend für die Spannungszeitflächen, indem der Magnetfluss ansteigt nach jeder einzelnen unipolaren Spannungszeitfläche, ab der Maximal-Remanenz hört die Integrationswirkung auf, und der Kern wirkt nun wie eine magnetische Feder. Der Strom zeigt nach dem Volleinschalten hauptsächlich den Wirkstrom der R-Last, der mit der Netzspannung in Phase liegt. In den ersten Halbwellen nach dem Volleinschalten erhebt sich über dem Spannungsnulldurchgang noch der etwas erhöhte Leerlaufblindstrom, weil der Trafo etwas zu stark vormagnetisiert wurde.

Der Transformatorkern wird dadurch zunächst in eine Richtung vormagnetisiert, um nachfolgend beim Zuschalten der Spannung in der entgegengesetzten Richtung voll aussteuerbar zu sein, ohne in die Sättigung zu gehen. Die zur richtigen Vormagnetisierung nötige Spannungszeitflächen-Breite muss einmal an die Trafotype angepasst werden, wofür ein Potentiometer, Trimmer, dient. Das Verfahren arbeitet gänzlich lastunabhängig.

Nach vollendetem Einschaltzyklus wird der Triac mit einem Relaiskontakt überbrückt, um seine Verlustwärme während des weiteren Betriebes zu vermeiden.

Messkurve von Scheitel-Einschaltvorgang mit einem 1-kVA-UI-Trafo, mit >100 A peak

Ein Einschaltvorgang des gleichen Trafos wie im Bild oben verwendet, allerdings mit einem Scheitelschalter eingeschaltet, ist im nebenstehenden Bild zu sehen. Im Nulldurchgang eingeschaltet wäre die Stromspitze noch größer.

Messkurve von Scheitel-Einschaltvorgang mit einem 1-kVA-Ringkern-Trafo, mit >200 A peak

Wird ein Ringkerntransformator mit einem Scheitelschalter eingeschaltet, löst eine Sicherung unter Umständen aus, wie es im nebenstehenden Bild zu sehen ist.

Anwendung

Typische Eigenschaften von Anwendungsgebieten von Transformatorschaltrelais sind:

  • Es ist häufiges Aus- und Einschalten erforderlich
  • Es ist erhöhte Zuverlässigkeit (Versorgungssicherheit) gefordert
  • Es soll ein Transformator mit hoher Effizienz und damit hohem Einschaltstrom eingesetzt werden
  • Ein Transformator befindet sich in einem geschlossenen Gehäuse ohne Kühlluftzufuhr und darf deshalb nur wenig Wärme erzeugen

Beispiele sind Trenntransformatoren in Endoskopiewagen oder bei Lichtzeichenanlagen mit LED-Signalleuchten. In vielen Fahrzeugen mit Netzeinspeisung, wie die von Rundfunkanstalten und des Technischen Hilfswerks, befinden sich Transformatorschaltrelais vor den Trenntransformatoren.

Transformatorschaltrelais sind besonders für Ringkern- und Schnittbandkerntransformatoren geeignet, da diese mit hoher magnetischer Flussdichte nahe der Sättigung arbeiten. Diese Kernbauformen verwenden texturiertes Kernblech, bei dem sich die Weiss-Bezirke durch den Magnetfluss besonders leicht ausrichten lassen. Ringkerntransformatoren haben außerdem keinen technologisch bedingten Luftspalt und deshalb eine hohe Remanenz und geraten beim Einschalten daher ohne Einschaltstrombegrenzung besonders schnell in die Sättigung des gesamten Kernes.

Mit der Sonderbauform „langsames Andimmen“ kann ein Trafoschaltrelais auch mehrere Schaltnetzteile zusammen, auch solche mit Powerfaktor-Korrektur, sanft einschalten, so dass die 16 A B-Gebäude-Absicherung nicht auslöst. Sonst löst üblicherweise schon bei mehr als zwei zusammen eingeschalteten Schaltnetzteilen von 50 Watt diese Absicherung aus.

Vor- und Nachteile

Trafoschaltrelais besitzen gegenüber solchen Einschaltstrombegrenzern, die aus einem Heißleiter bestehen, den Vorteil, dass sie sofort wieder bereit sind, d. h. keine Abkühlphase benötigen, und dass sie den Einschaltüberstrom gänzlich vermeiden. Gegenüber anderen elektronischen Sanftanlaufgeräten besitzen sie den Vorteil einer kürzeren Startphase und der präzisen Einschaltung auch leerlaufender Transformatoren.

Trafoschaltrelais können auch den Ausfall nur einer Halbwelle des speisenden Netzes beherrschen, indem sie sofort aus und zum richtigen Zeitpunkt wieder zuschalten, ohne einen Einschaltstrom zu verursachen. (Der Halbwellenausfalltest ist ein Prüfkriterium für elektromedizinische Geräte.) Trafoschaltrelais überstehen bei richtiger Absicherung einen Kurzschluss. Über Trafoschaltrelais betriebene Transformatoren können mit weniger trägen Sicherungen auf den Nennstrom abgesichert werden und sind daher besser gegen Überlast geschützt. Die Temperaturbelastung von Schmelzsicherungen, wie sie bei Einschaltstromstößen auftritt, wird vermieden, wodurch deren Zuverlässigkeit und Lebensdauer steigt.

Der Nachteil von Trafoschaltrelais gegenüber zum Beispiel Heißleitern ist der höhere Bauteile-Aufwand und folglich der Preis. Sie werden daher kaum in Massenanwendungen für private Verbraucher eingesetzt. In anderen Anwendungen kann der höhere Preis vertretbar sein und die Vorteile überwiegen; so zum Beispiel bei Trenntransformatoren in medizinischen Geräten und Verkehrs-Lichtsignalanlagen.

Einzelnachweise

  1. Patent EP 0575715 „Procedure and equipment for avoiding inrush currents.“, 1993
  2. Patent DE 4019592 „Inrush alternating current limitation for inductive load switching.“, 1992

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Transformatorschaltrelais — Ein Transformatorschaltrelais (kurz Trafoschaltrelais oder TSRL) ist eine elektronische Baugruppe, die den erhöhten Einschaltstrom beim Einschalten eines Transformators mit Eisenkern vermeidet. Sie dient zugleich als Relais zum Zu und Abschalten… …   Deutsch Wikipedia

  • Anlaufstrom — Widerstandsverlauf einer Glühlampe bei verschiedenen Spannungen; der Kaltwiderstand beträgt nur etwa 7 % desjenigen bei Betriebstemperartur, der Einschaltstrom folglich fast das 15fache des Nennwertes …   Deutsch Wikipedia

  • Einschaltstromstoß — Widerstandsverlauf einer Glühlampe bei verschiedenen Spannungen; der Kaltwiderstand beträgt nur etwa 7 % desjenigen bei Betriebstemperartur, der Einschaltstrom folglich fast das 15fache des Nennwertes …   Deutsch Wikipedia

  • Anlaufstrombegrenzer — Als Sanftanlauf (engl. Softstart) werden Maßnahmen zur Leistungsbegrenzung beim Einschalten eines elektrischen Gerätes, meist eines größeren Netzteiles oder elektrischen Motors bezeichnet. Zum einen wird dadurch der Einschaltstrom des Gerätes… …   Deutsch Wikipedia

  • Anlaufstrombegrenzung — Als Sanftanlauf (engl. Softstart) werden Maßnahmen zur Leistungsbegrenzung beim Einschalten eines elektrischen Gerätes, meist eines größeren Netzteiles oder elektrischen Motors bezeichnet. Zum einen wird dadurch der Einschaltstrom des Gerätes… …   Deutsch Wikipedia

  • Einschaltstrombegrenzer — Als Sanftanlauf (engl. Softstart) werden Maßnahmen zur Leistungsbegrenzung beim Einschalten eines elektrischen Gerätes, meist eines größeren Netzteiles oder elektrischen Motors bezeichnet. Zum einen wird dadurch der Einschaltstrom des Gerätes… …   Deutsch Wikipedia

  • Einschaltstrombegrenzung — Als Sanftanlauf (engl. Softstart) werden Maßnahmen zur Leistungsbegrenzung beim Einschalten eines elektrischen Gerätes, meist eines größeren Netzteiles oder elektrischen Motors bezeichnet. Zum einen wird dadurch der Einschaltstrom des Gerätes… …   Deutsch Wikipedia

  • Sanftanlaufgerät — Als Sanftanlauf (engl. Softstart) werden Maßnahmen zur Leistungsbegrenzung beim Einschalten eines elektrischen Gerätes, meist eines größeren Netzteiles oder elektrischen Motors bezeichnet. Zum einen wird dadurch der Einschaltstrom des Gerätes… …   Deutsch Wikipedia

  • Softstart — Als Sanftanlauf (engl. Softstart) werden Maßnahmen zur Leistungsbegrenzung beim Einschalten eines elektrischen Gerätes, meist eines größeren Netzteiles oder elektrischen Motors bezeichnet. Zum einen wird dadurch der Einschaltstrom des Gerätes… …   Deutsch Wikipedia

  • Softstarter — Als Sanftanlauf (engl. Softstart) werden Maßnahmen zur Leistungsbegrenzung beim Einschalten eines elektrischen Gerätes, meist eines größeren Netzteiles oder elektrischen Motors bezeichnet. Zum einen wird dadurch der Einschaltstrom des Gerätes… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”