Ventilantrieb

Ventilantrieb

Als Ventilantrieb wird der Antrieb bezeichnet, mit dem ein Stellventil maschinell betätigt werden kann. Man unterscheidet zwischen elektrischen und pneumatischen Antrieben. Der Ventilantrieb verändert die Position des Ventilkegels und damit den Durchfluss durch das Ventil. Beim elektrischen 3-Punkt-Antrieb und dem elektrischen stetigen Antrieb wird die Bewegung der Ventilspindel durch einen elektrischen Motor erzeugt, der über ein Schraubengetriebe die Drehbewegung des Motors in eine Hubbewegung umsetzt. Der Ventilantrieb wird direkt auf das Oberteil des Ventils montiert. Dort befindet sich auch die Ventilspindel, die mit dem Antrieb verbunden wird.

3-Wegeventil mit stetigem Ventilantrieb

Inhaltsverzeichnis

Bauarten

3-Punkt-Antrieb

Das Ventil wird über 2 elektrische Anschlüsse angesteuert, die den Motor direkt antreiben. Wird der AUF-Anschluss angesteuert, wird das Ventil durch den Motor aufgefahren. Mit dem ZU-Anschluss wird das Ventil mit dem Motor zugefahren. Wird keiner der Anschlüsse betätigt, ruht das Ventil in seiner momentanen Stellung. Die Stellung des Ventils wird über die Laufzeit des Ventils, über ein Potentiometer oder über die Wegimpulse eines Hallsensors ermittelt. Als Laufzeit wird die Zeit bezeichnet, die der Ventilantrieb braucht, um das Ventil von der Endstellung ZU zur Endstellung AUF zu fahren. Die Laufzeit muss in den jeweiligen Regler (DDC-GA-Komponente) eingetragen werden, damit dieser mit dem Ventil arbeiten kann. Die Laufzeit beträgt bei Ventilen in der Heizungstechnik in der Regel ca. 60 bis 180s.

Unter Umständen störungsanfällig, da nach einiger Zeit die momentane Position nicht mehr exakt festgestellt werden kann. Oft werden zur Stellungsrückmeldung Potentiometer eingesetzt, die naturgemäß verschleißen und so häufige Fehlerquellen sind. Vorteilhafter sind berührungslos inkremental arbeitende und somit verschleißfreie Hall-Sensoren, wie sie in einigen modernen Antrieben verwendet werden.

Mikrocontroller gesteuerter Antrieb MC1503 (stetig & 3-Punkt, Stellkraft 15kN) auf Ventil DN150

Stetiger Antrieb

Das Ventil wird über die Betriebsspannung und ein stetiges analoges Stellsignal 0...10 V, 0...20 mA oder 4...20 mA angesteuert. Dabei entspricht der analoge Wert (Spannung, die angelegt wird) der jeweiligen Ventilöffnung. Die Öffnung des Ventils erfolgt stufenlos.

Spannung Ventilöffnung
0 V 0%
1 V 10%
2 V 20%
.... ....
10 V 100%

Das analoge Signal im Antrieb wird durch einen Motor in die exakte Stellung umgesetzt. Dieser wiederum wird durch die im Antrieb integrierte Elektronik angesteuert.

Im industriellen Einsatzbereich verwendet man in der Regel Stromsignale 4...20 mA. Die unter Grenze von 4mA für die Ventilstellung 0% ermöglicht das schnelle Erkennen einer eventuellen Unterbrechung des Steuersignals bei einem Anlagendefekt. In der Gebäudetechnik verwendet man meist Spannungssignale 0...10 V.

Vorteil: problemlos regelbar
Nachteil: höherer Preis durch die integrierte Elektronik

Moderne Mikrocontroller-gesteuerte Antriebe sind so aufgebaut, dass sie gleichermaßen für 3-Punkt wie für stetige Eingangssignale geeignet sind und zusätzliche Features wie einstellbare Geschwindigkeit, Hysterese, Blockiererkennung des Ventilkegels usw. bieten.

Elektrothermischer Antrieb (pseudo-stetig)

Ein elektrisch beheiztes Ausdehnungselement wirkt unmittelbar auf den Ventilstößel. Die Betriebsspannung beträgt üblicherweise AC 24 V oder AC 230 V. Die Ventilöffnung wird durch das Tastverhältnis der Ansteuerung bestimmt (Pulsweitenmodulation).

Vorteil: sehr niedriger Preis, geräuschlos
Nachteil: Eventuell eingeschränkter zulässiger Umgebungstemperaturbereich

Magnetventil

Neben den beiden Zuständen AUF und ZU können bei Magnetventilen mit eingebauter Feder mit definierter Federkonstanten auch Zwischenzustände realisiert werden. So wird durch Stromansteuerung eine variable Positionierung des Ankers ermöglicht, der so zu einer variablen Stellung und somit Regelung des Durchflusses führt.

Pneumatischer Antrieb

Pneumatische Membranantriebe basieren auf einer völlig anderen Funktionsweise als die oben beschriebenen elektrischen Antriebe. Eine mit der Ventilspindel gekoppelte Membran wird über extern zugeführte Druckluft bewegt. Die exakte Position wird über einen elektrischen Stellungsregler erreicht, der die Druckluftzufuhr regelt. Die Stellkraft von pneumatischen Membranantrieben hängt ab von deren Membranfläche sowie vom Druck der verwendeten Druckluft. Üblich sind Membranflächen von ca. 300 cm² bis zu ca. 2.160 cm².

Pneumatische Antriebe haben den Vorteil, sehr schnell betätigt werden zu können und hohe Stellkräfte erreichen zu können. Weiter sind sie meist unkritisch im Bereich explosionsgefährdeter Umgebungen, im Außeneinsatz und bei niedrigen Temperaturen. Nachteilig sind die große Bauform und die Notwendigkeit einer externen Druckluftversorgung, die eine entsprechende Infrastruktur voraussetzt. Dementsprechend werden sie fast ausschließlich im industriellen Bereich sowie in Kraftwerken eingesetzt, nicht jedoch im Bereich der Gebäudetechnik.

Antrieb mit Sicherheitsfunktion

Zur Sicherstellung einer definierten Ventilstellung bei Ausfall der Steuerenergie (insbesondere bei elektrischen Antrieben) verfügen Notstellantriebe über einen mechanischen Energiespeicher, z.B. eine Feder, die für sicheres Schließen oder Öffnen des Ventils sorgt. Diese Antriebe werden in Zusammenhang mit passenden Ventilen nach DIN EN 14597 typgeprüft (Ersatz für die alte Norm DIN 32730).

Anwendung

Ventilantriebe werden genutzt, um Ventile maschinell zu betätigen. Das Signal wird durch die Regelung (Kompaktregler oder DDC-GA-Komponente) der Anlage erzeugt. Mit dem durch das Ventil veränderten Durchfluss von Flüssigkeiten wird gleichzeitig die Menge der Wärme bzw. Kälte reguliert. Die Wahl der Ventilantriebe in der Praxis erfolgt durch das Einsatzfeld und das eingebaute Ventil, da die Befestigung, der Hub und auch die notwendige Kraft des Ventilantriebes variieren. Die Stellkräfte von elektrischen Ventilantrieben für übliche Anwendungen im Bereich von Heizungs- und Klimaanwendungen sowie im industriellen Bereich reichen von wenigen Hundert N bis über 25 kN, pneumatische Antriebe erreichen ca. 40kN.

Siehe auch

Stellantrieb

Elektromotorischer Antrieb für Rohrleitungsarmaturen


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Elektrischer Stellantrieb — Elektrischer Hubantrieb MC1503 auf Regelventil DN150 Ein Stellantrieb ein Teil eines Regelkreises oder einer Steuereinrichtung, der in jedem Stellglied vorhanden ist. Als Bindeglied zwischen dem Prozessleitsystem und dem eigentlichen Prozess… …   Deutsch Wikipedia

  • Niederschraubventil — Dieser Artikel beschreibt das Ventil als technische Vorrichtung; zum Ventil bei Blasinstrumenten siehe Ventil (Blasinstrument). Dieser Artikel oder Abschnitt besteht hauptsächlich aus Listen, an deren Stelle besser Fließtext stehen sollte …   Deutsch Wikipedia

  • Regelarmatur — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung …   Deutsch Wikipedia

  • Alfa 164 — Alfa Romeo Alfa Romeo 164 (1987–1993) 164 Hersteller: Alfa Romeo Produktionszeitraum: 1987–1997 …   Deutsch Wikipedia

  • Alfa Romeo 164 — Alfa Romeo Alfa Romeo 164 (1987–1992) 164 Hersteller: Alfa Romeo Produktionszeitraum …   Deutsch Wikipedia

  • Direct Digital Control — DDC GA Komponente Draufsicht Eine Komponente der Direct Digital Control Gebäudeautomation, kurz DDC GA, ist eine einem Computer ähnliche elektronische Baugruppe, die für Steuerungs und Regelungsaufgaben in der Gebäudeautomatisierung eingesetzt… …   Deutsch Wikipedia

  • Gegenlaufmotor — Junkers Gegenkolbenmotor Der Gegenkolbenmotor auch bekannt als Gegenläufermotor, Gegenlaufmotor oder kurz Gegenläufer ist ein Hubkolben Verbrennungsmotor, bei dem zwei Kolben im selben Zylinder gegeneinander arbeiten und sich einen gemeinsamen… …   Deutsch Wikipedia

  • Gegenläufer — Junkers Gegenkolbenmotor Der Gegenkolbenmotor auch bekannt als Gegenläufermotor, Gegenlaufmotor oder kurz Gegenläufer ist ein Hubkolben Verbrennungsmotor, bei dem zwei Kolben im selben Zylinder gegeneinander arbeiten und sich einen gemeinsamen… …   Deutsch Wikipedia

  • Gegenläufermotor — Junkers Gegenkolbenmotor Der Gegenkolbenmotor auch bekannt als Gegenläufermotor, Gegenlaufmotor oder kurz Gegenläufer ist ein Hubkolben Verbrennungsmotor, bei dem zwei Kolben im selben Zylinder gegeneinander arbeiten und sich einen gemeinsamen… …   Deutsch Wikipedia

  • Kompaktregler — Ein Kompaktregler ist eine einem Computer ähnliche elektronische Baugruppe, die für Steuerungs und Regelungsaufgaben in der Gebäudeautomatisierung eingesetzt wird. Der Regler ist speziell für eine begrenzte Anzahl von Regelungsaufgaben vorgesehen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”