Wasser-Dampf-Kreislauf

Wasser-Dampf-Kreislauf
Clausius-Rankine-Prozess, Schaltbild
Clausius-Rankine-Prozess îm p-v-Diagramm
Clausius-Rankine-Prozess îm T-s-Diagramm

Der Clausius-Rankine-Kreisprozess ist ein thermodynamischer Kreisprozess. Er ist nach dem deutschen Physiker Rudolf Julius Emanuel Clausius und dem schottischen Ingenieur William John Macquorn Rankine benannt. Er dient als Vergleichsprozess für das Dampfkraftwerk in seiner einfachsten Konstellation mit Turbine T, Kondensator Ko, Speisepumpe Sp und Kessel mit Überhitzer Ke. Wie bei allen thermodynamischen Kreisprozessen kann er den Wirkungsgrad des entsprechenden Carnot-Prozesses nicht übertreffen. In Dampfkraftwerken wird zunächst mechanische Energie "erzeugt", indem ein Arbeitsmittel (meist Wasser, aber beispielsweise auch Ammoniak) abwechselnd bei hohem Druck kondensiert und bei niedrigem Druck verdampft. Der Druck wird von der Speisepumpe durch Aufwand von Arbeit aufgebracht und in der Turbine unter Abgabe von Arbeit abgebaut. Das Arbeitsmittel wird in einem geschlossenen Kreislauf geführt


Inhaltsverzeichnis

Die vier Zustandsänderungen

  • 1 → 2 Adiabate Expansion des Dampfes in der Turbine (da Vergleichsprozesse idealisiert sind, also innerlich reversibel, ist der Verlauf isentrop).
  • 2 → 3 Isobare und isotherme Kondensation des Dampfes im Kondensator durch Kühlung mittels eines Kühlwasserkreislaufes.
  • 3 → 4 Adiabate, ebenfalls isentrope Druckerhöhung durch die Kesselspeisepumpe, die das Kondensat in den Dampfkessel fördert.
  • 4 → 1 Isobare Wärmezufuhr im Dampfkessel, wobei das Wasser zunächst bis zum Verdampfungspunkt erwärmt wird, dann verdampft und schließlich noch eine weitere Erwärmung, die sogenannte Überhitzung erfährt.

Wirkungsgrad

Aus dem T-s-Diagramm lässt sich ablesen, dass der größte Teil der Wärmezufuhr für die Verdampfung aufgebracht wird. Vorteil des Dampfkraftprozesses gegenüber den Prozessen mit inerten Gasen ist die große spezifische Kreisprozessarbeit wegen der geringen Arbeit der Speisepumpe (kleines spezifisches Volumen der Flüssigkeit). Das Verhältnis der spezifischen Volumina zwischen Sattdampf und flüssigem Wasser ist aus dem p-v-Diagramm nicht direkt ablesbar, da die Abszisse logarithmisch geteilt ist. Bei 50 bar ist es ca. 31, bei 0,03 bar ca. 46000. Der Wirkungsgrad des Vergleichsprozesses berechnet sich mit:

\eta_{CR} = \frac{h_{1} - h_{2} - (h_{4} - h_{3})}{h_{1}-h_{4}}

für das Beispiel mit einem Frischdampfzustand von 50 bar bei 400 °C und einem Kondensatordruck von 0,03 bar ergibt sich:

\eta_{CR} = \frac{3197- 1972 - (106 - 101)}{3197-106}=0,395

Die Zahlenwerte in der Gleichung sind die Enthalpien in kJ/kg. Die Einheiten kürzen sich heraus. Die Differenz in der Klammer ist die Arbeit der Kesselspeisepumpe, nur etwa 0,5 Prozent der Turbinenarbeit.

Verbesserungen

Der Prozess kann verbessert werden durch:

  • Erhöhen des Frischdampfdruckes und der Frischdampftemperatur. Damit die Dampfnässe in der letzten Turbinenstufe nicht zu hoch wird, ist zusätzlich eine Zwischenüberhitzung erforderlich, die wiederum zur Wirkungsgradverbesserung beiträgt (vergl. Dampfkraftwerk).
  • Speisewasservorwärmung durch Entnahmedampf aus der Turbine. Dadurch erhöht sich die mittlere Temperatur der Wärmezufuhr, man spricht von "Carnotisieren".

Realer Prozess

Die übliche maximale Temperatur im fossil beheizten Dampfkraftwerk liegt heute bei 570 °C, der Druck bei 250 bar. Eine Zwischenüberhitzung ist dabei zwingend erforderlich. Der Druck im Kondensator liegt - abhängig von der Kühlung - bei etwa 0,03 bar (also Unterdruck) entsprechend einer Temperatur von etwa 25°C. In Kernkraftwerken wird nur Sattdampf mit einer Temperatur unterhalb 300 °C erzeugt. Eine Überhitzung des Frischdampfes ist dort nicht möglich, lediglich eine Zwischenüberhitzung mittels Frischdampf.

Beim realen Kraftwerksprozess ist die Turbine zwar weitestgehend adiabat (vergl. Adiabate Maschine), aber durch Drossel-, Stoß- und Reibungsvorgänge (Dissipation) wird die Arbeit nicht vollständig an die Welle abgegeben, die Entropie nimmt zu. Bei großen Turbinen liegt der Gütegrad etwa bei 0,9. Weiter sind wirkungsgradmindernd die Strömungsdruckverluste in der Anlage, insbesondere im Kessel (keine isobare Vorwärmung und keine isobare bzw. isotherme Verdampfung, insbesondere keine isobare Überhitzung). Auch die Speisepumpe arbeitet nicht isentrop.


Entgegengesetzter Prozess zum Kühlen

Kaltdampfprozess, Schaltbild
Kaltdampfprozess, T-s-Diagramm

Ein entsprechender Prozess in entgegengesetzter Richtung („linksläufig“) kann für Kältemaschinen und Wärmepumpen verwendet werden. In diesem Fall sind die Schritte im Kreislaufschema und im Diagramm rechts:

  • 4 - 1 : Verdampfung auf niedrigem Temperatur- und Druckniveau (Wärmeaufnahme in Kühlschlangen, Qzu statt Qab)
  • 1 - 2 : Kompression (z. B. Kompressor in Kühlschrank)
  • 2 - 3 : Abkühlung, Kondensation und Unterkühlung auf hohem Temperatur- und Druckniveau (Wärmeabgabe Qab statt Qzu)
  • 3 - 4 : Entspannung der flüssigen Phase, wobei eine teilweise Verdampfung erfolgt.

Der letzte Schritt könnte theoretisch mit einer Turbine oder Kolbenmaschine adiabatisch durchgeführt werden, dann entspräche dieser ideale Prozess einem linksläufigen Clausius-Rankine-Prozess. In der Praxis verzichtet man bei Kompressionskältemaschinen allerdings auf den Energieertrag dieser Stufe (um 1 % des Gesamtumsatzes), um den Aufbau zu erleichtern. Eine Turbine für verdampfende Flüssigkeit wäre auch kaum zu realisieren. Deshalb wird über eine Drossel irreversibel entspannt, wobei die Enthalpie konstant bleibt. Im T-S-Diagramm liegt Punkt 4 dann schräg rechts unterhalb von Punkt 3, die nicht abgegebene Energie muss folglich nicht als Qzu wieder aufgenommen werden und die Leistungszahl reduziert sich etwas.


Literatur

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wasser — (H2O) ist eine chemische Verbindung aus den Elementen Sauerstoff (O) und Wasserstoff (H). Wasser ist die einzige chemische Verbindung auf der Erde, die in der Natur in allen drei Aggregatzuständen vorkommt. Die Bezeichnung Wasser wird… …   Deutsch Wikipedia

  • Wasser — Wasser, im gewöhnlichen Sinne die flüssige Aggregatform von H2O, bei +100° C. und darüber unter atmosphärischer Pressung dampfförmig (s. Dampf, Bd. 2, S. 537 ff.), von 0° C. abwärts fett (s. Eis, Bd. 3, S. 260). Bei ca. 4° C. tritt unter… …   Lexikon der gesamten Technik

  • Wasser — Wasser, der tropfbar flüssige Stoff, der 3/5 der Erdoberfläche bedeckt, findet sich als Eis, flüssiges W. und Wasserdampf, früher für ein Element gehalten, 1781 83 von Cavendish, Watt und Priestley erkannt als eine Verbindung von Wasserstoff… …   Kleines Konversations-Lexikon

  • Wasser — Sodawasser; Selterswasser; Mineralwasser; Mineral (österr., schweiz.); Sprudelwasser; Tafelwasser; Soda; Sprudel; Selters (Markenbegriff); blaues Gold; Aqua (lat.); …   Universal-Lexikon

  • Leichtes Wasser — Eisberg, hier liegen alle drei Aggregatzustände des Wassers nebeneinander vor. Wasser (H2O) ist eine chemische Verbindung aus den Elementen Sauerstoff (O) und Wasserstoff (H). Die Bezeichnung „Wasser“ wird besonders für den flüssigen… …   Deutsch Wikipedia

  • Kohlekraftwerk — Koh|le|kraft|werk 〈n. 11〉 Kraftwerk, in dem durch die Verbrennung von Kohle Wasser verdampft wird, welches zur Energiegewinnung Generatoren antreibt * * * Koh|le|kraft|werk, das: Kraftwerk, in dem Kohle in Strom umgewandelt wird. * * *… …   Universal-Lexikon

  • Druckwasserreaktor — Aufbau eines Kernkraftwerks mit Druckwasserreaktor Der Druckwasserreaktor (DWR) ist eine Bauform eines Kernreaktors, bei der Wasser als Moderator und Kühlmittel dient. Der Betriebsdruck des Wassers wird hier, anders als beim Siedewasserreaktor,… …   Deutsch Wikipedia

  • Energie — Physikalische Größe Name Energie Formelzeichen der Größe E Größen und Einheiten system Einheit Dimension SI …   Deutsch Wikipedia

  • Kohlekraftwerk: Energie aus der Kohle —   Zwar gilt Kohle nicht mehr als Schlüsselfaktor der Volkswirtschaft, und gerade im Energiebereich wurde die einstige Vormachtstellung der Kohle in den letzten Jahrzehnten vom Erdöl und Erdgas ausgehöhlt, dennoch bleibt sie vorerst mit einem… …   Universal-Lexikon

  • Essener Hochdruck-Rohrleitungsbau — BHR Hochdruck Rohrleitungsbau Unternehmensform GmbH Gründung 1947 Unternehmenssitz Essen Mitarbeiter ca. 1275 (2008) …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”