Wavelet


Wavelet

Mit dem Begriff Wavelet werden die einer kontinuierlichen oder diskreten Wavelet-Transformation zugrundeliegenden Funktionen bezeichnet. Das Wort ist eine Neuschöpfung aus dem französischen „ondelette“, das „kleine Welle“ bedeutet und teils wörtlich („onde“→„wave“), teils phonetisch („-lette“→„-let“) ins Englische übertragen wurde. Der Ausdruck Wavelet wurde in den 1980er Jahren in der Geophysik (Jean Morlet, Alex Grossmann) für Funktionen geprägt, welche die Short-Time-Fourier-Transformation verallgemeinern, wird jedoch seit Ende der 1980er ausschließlich in der heute üblichen Bedeutung verwendet. In den 1990er Jahren entstand ein regelrechter Wavelet-Boom, ausgelöst durch die Entdeckung von kompakten, stetigen (bis hin zu beliebiger Ordnung der Differenzierbarkeit) und orthogonalen Wavelets durch Ingrid Daubechies (1988) und die Entwicklung des Algorithmus der schnellen Wavelet-Transformation (FWT) mit Hilfe der Multiskalenanalyse (MultiResolution Analysis – MRA) durch Stéphane Mallat und Yves Meyer (1989).

Inhaltsverzeichnis

Wavelets und Transformationen

Im Gegensatz zu den Sinus- und Kosinus-Funktionen der Fourier-Transformation besitzen die meistverwendeten Wavelets nicht nur Lokalität im Frequenzspektrum, sondern auch im Zeitbereich. Dabei ist „Lokalität“ im Sinne kleiner Streuung zu verstehen. Die Wahrscheinlichkeitsdichte ist das normierte Betragsquadrat der betrachteten Funktion bzw. von deren Fourier-Transformierten. Dabei ist das Produkt beider Varianzen immer größer als eine Konstante, analog zur heisenbergschen Unschärferelation, siehe auch das WKS-Abtasttheorem. Aus dieser Einschränkung heraus entstanden in der Funktionalanalysis die Paley-Wiener-Theorie (Raymond Paley, Norbert Wiener), ein Vorläufer der diskreten Wavelet-Transformation, und die Calderón-Zygmund-Theorie (Alberto Calderón, Antoni Zygmund), die der kontinuierlichen Wavelet-Transformation entspricht.

Das Integral einer Wavelet-Funktion ist immer 0, daher nimmt in der Regel die Waveletfunktion die Form von nach außen hin auslaufenden (kleiner werdenden) Wellen (also „Wellchen“ = Ondelettes = Wavelets) an.

Haar-Wavelet
Daubechies D4-Wavelet
Daubechies D20-Wavelet

Wichtige Beispiele für Wavelets sind das Haar-Wavelet (Alfréd Haar 1909), die nach Ingrid Daubechies benannten Daubechies-Wavelets (um 1990), die ebenfalls von ihr konstruierten Coiflet-Wavelets und das eher theoretisch bedeutsame Meyer-Wavelet (Yves Meyer, um 1988).

Meyer-Wavelet
Morlet-Wavelet
Mexikanischer Hut

Wavelets gibt es für Räume beliebiger Dimension, meist wird ein Tensorprodukt einer eindimensionalen Waveletbasis verwendet. Aufgrund der fraktalen Natur der Zwei-Skalen-Gleichung in der MRA haben die meisten Wavelets eine komplizierte Gestalt, die meisten haben keine geschlossene Form.

Anwendung

Anwendung finden Wavelets in Methoden der Signalverarbeitung, insbesondere der Signalkompression, welche als ersten Schritt eine diskrete Wavelet-Transformation beinhalten. Diese wurden seit Anfang der 1990er Jahre als Meilenstein der Bildkompression und Audiodatenkompression propagiert. Trotzdem sind außerhalb von Spezialanwendungen, wie z. B. in der Geophysik oder Computertomographie, solche Wavelet-Kompressionsmethoden nur in der JPEG2000-Norm und seinen direkten Vorgängern wie dem DjVu und dem LuraWave-Format implementiert. Bisher ist JPEG2000 wenig verbreitet. In einem weiten Sinne basiert auch das gängige JPEG auf einer Wavelet-Transformation, die verwendete Diskrete Kosinustransformation kann als Haar-Wavelet interpretiert werden. In Methoden der Signalanalyse wird eher die kontinuierliche Wavelet-Transformation in diskretisierter Form verwendet.

Wavelets der diskreten Wavelet-Transformation

Ein Wavelet ψ ist hier die erzeugende Funktion eines affinen Systems von Funktionen \psi_{j,k}(x):=2^{j/2}\,\psi(2^j\,x-k), welche eine Hilbert-Basis, d. h. ein vollständiges Orthonormalsystem im Funktionenraum L^2(\R) bilden. Die Darstellung einer Funktion mittels dieser Funktionen nennt man Wavelet-Transformation:

f\mapsto c(f):=\mathcal W[f]=\left(c_{j,k}(f):=\langle f,\,\psi_{j,k}\rangle:\;j,k\in\Z\right)

und inverse Wavelet-Transformation

c=(c_{j,k}:\;j,k\in\Z)\mapsto \mathcal W^*[f]:=\sum_{j,k\in\Z}c_{j,k}\cdot\psi_{j,k}.

Das elementarste Beispiel ist das Haar-Wavelet. Es ist hilfreich, wenn die Wavelet-Funktion zu einer Multiskalenanalyse assoziiert ist, da dann in der praktischen Berechnung die Auswertung vieler der Integrale, die hinter den Skalarprodukten stehen, durch wiederholte Faltung von einmal gewonnenen Koeffizientenfolgen mit endlichen Filterfolgen ersetzt werden kann. Dieses beschleunigte Verfahren nennt man dementsprechend schnelle Wavelet-Transformation.

Signalverarbeitung

Der Zusammenhang zwischen Wavelets und Filtern zur Signalverarbeitung ist nun recht anschaulich: Die Waveletmaske entspricht der Impulsantwort eines Bandpassfilters mit einer gewissen Schärfe in der Zeit (Filterlänge) und in der Frequenz (Bandbreite). Filterlänge und Bandbreite sind umgekehrt proportional, so wird eine "Streckung" des Filters um den Faktor 2 die Bandbreite halbieren.

Erweiterungen

Es ist möglich und sinnvoll, andere Skalenfaktoren zu betrachten. So entspricht die DCT-Variante im JPEG-Algorithmus einem Haar-Wavelet zur Blockgröße 8. Unter weiteren Abschwächungen der analytischen Anforderungen ergeben sich Wavelet-Frames (siehe Rahmen) beziehungsweise Framelets, diese erzeugen eine redundante Signaltransformation, die unter bestimmten Umständen vorzuziehen ist, zum Beispiel bei der Rauschunterdrückung.

Eine in letzter Zeit aufgekommene Variante sind die so genannten Multiwavelets, die nicht eine, sondern einen Vektor von Skalierungsfunktionen in der MRA aufweisen und dementsprechend matrixwertige Skalierungsfolgen.

Der neue JPEG2000-Standard der Bildkomprimierung kann (biorthogonale, 5/3 und 9/7) Wavelets verwenden.

Literatur

  • Barbara Burke Hubbard: Wavelets: Die Mathematik der kleinen Wellen. Birkhäuser Verlag, 1997, ISBN 3-7643-5688-X
  • Jöran Bergh, Frederik Ekstedt, Martin Lindberg: Wavelets mit Anwendungen in Signal- und Bildverarbeitung. Springer Verlag 2007, ISBN 978-3-540-49011-1

Weblinks

 Commons: Wavelet – Album mit Bildern und/oder Videos und Audiodateien

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wavelet — Saltar a navegación, búsqueda Para otros usos de este término, véase Transformación (desambiguación). La transformada wavelet o transformada óndula es un tipo especial de transformada de Fourier que representa una señal en términos de versiones… …   Wikipedia Español

  • Wavelet — Wave let, n. A little wave; a ripple. [1913 Webster] …   The Collaborative International Dictionary of English

  • Wavelet — Rencontré dans le Nord Pas de Calais, c est un diminutif de Wawel, nom de personne d origine germanique (racine waffan = arme). Source : M.T. Morlet, Dictionnaire étymologique des noms de famille …   Noms de famille

  • wavelet — 1813, dim. of WAVE (Cf. wave) (n.) …   Etymology dictionary

  • wavelet — ► NOUN ▪ a small wave …   English terms dictionary

  • wavelet — [wāv′lit] n. a little wave; ripple …   English World dictionary

  • Wavelet — A wavelet is a mathematical function used to divide a given function or continuous time signal into different frequency components and study each component with a resolution that matches its scale. A wavelet transform is the representation of a… …   Wikipedia

  • Wavelet — Вейвлеты (от англ. wavelet), всплески (написание вэйвлеты уже почти не употребляется)  это математические функции, позволяющие анализировать различные частотные компоненты данных. Описание В начале развития области употреблялся термин «волночка»  …   Википедия

  • Wavelet — Toda transformada wavelet (ondículas u ondeletas) considera una función (que se supone del tiempo) en términos de oscilaciones tanto en el tiempo como en la frecuencia. Las transformaciones wavelet se clasifican en transformadas wavelet discretas …   Enciclopedia Universal

  • Wavelet — Ondelette En mathématiques, une ondelette est une fonction de carré sommable sur l espace euclidien , le plus souvent oscillante et de moyenne nulle, choisie comme outil d analyse et de reconstruction multi échelle. Les ondelettes se rencontrent… …   Wikipédia en Français