Weg (Mathematik)


Weg (Mathematik)

In der Topologie und der Analysis ist ein Weg oder eine parametrisierte Kurve eine stetige Abbildung eines reellen Intervalls in einen topologischen Raum. Das Bild eines Weges heißt Kurve, Träger oder Spur.

Inhaltsverzeichnis

Definition

Sei X ein topologischer Raum, I = [a,b] ein reelles Intervall. Ist f: \ I \longrightarrow  X eine stetige Funktion, dann heißt f ein Weg in X. Die Bildmenge f(I) heißt Kurve in X.

Die Punkte f(a) und f(b) heißen Anfangspunkt und Endpunkt der Kurve.

Ein Weg f heißt geschlossener Weg, wenn f(a) = f(b) ist. Ein geschlossener Weg liefert eine stetige Abbildung vom Einheitskreis S1 nach X. Einen geschlossenen Weg nennt man auch Schleife.

Ein Weg f heißt einfacher Weg (oder auch doppelpunktfrei), wenn f auf [a,b) injektiv ist. Insbesondere ist also f(a) = f(b) zugelassen. Ein einfacher Weg heißt auch Jordan-Weg.

Diese Definition umfasst das, was wir uns intuitiv unter einer „Kurve“ vorstellen: Eine zusammenhängende geometrische Figur, die „wie eine Linie“ ist (eindimensional). Aber es gibt auch Kurven, die nicht intuitiv so genannt werden würden.

Man muss zwischen einem Weg und einer Kurve (dem Bild eines Weges) unterscheiden. Zwei verschiedene Wege können dasselbe Bild haben. Oft sind wir jedoch nur an dem Bild interessiert, und nennen dann den Weg eine Parameterdarstellung oder Parametrisierung der Kurve.

Wenn es zu einer Kurve eine Parametrisierung gibt, die ein Jordan-Weg ist, dann nennt man die Kurve eine Jordan-Kurve, ebenso für geschlossene Kurve.

Beispiele

Der Graph einer stetigen Funktion h: \ [a,b] \longrightarrow X ist eine Jordan-Kurve in R×X. Eine Parametrisierung ist der Jordan-Weg f: \ [a,b] \longrightarrow R×X, mit f(t) = (t,h(t)). Dabei wird auf R×X die Produkttopologie verwendet.

Der Einheitskreis ist eine geschlossene Jordan-Kurve.

Rektifizierbare Wege

Ist X ein metrischer Raum mit Metrik d, dann können wir die Länge L eines Weges f in X definieren:


  L(f) = \sup\left\{ \sum_{i=1}^n d \big(f(t_i),f(t_{i-1})\big)\ |\ n \in \mathbb{N}, a\le t_0 < t_1 < \ldots < t_n \le b\right\}

Ein rektifizierbarer Weg ist ein Weg mit endlicher Länge.

Ist weiterhin X=\mathbb{R}^n, dann gilt:

Jeder stückweise stetig differenzierbare Weg ist rektifizierbar, und seine Länge ist das Integral über den Betrag der Ableitung:

L(f) = \int_a^b |f'(t)| \,\mathrm{d}t

Die Koch-Kurve und auch eine Trajektorie eines Wiener-Prozesses sind Beispiele für nicht rektifizierbare Wege.

Andere Wege

Ein fraktaler Weg ist ein Weg mit gebrochener Dimension. Da es verschiedene Definitionen der gebrochenen Dimension gibt, gibt es also auch verschiedene Definition eines fraktalen Wegs. Typische Beispiele sind die Koch-Kurve und die Drachenkurve.

Siehe auch

Literatur


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • WEG — Die Abkürzung WEG steht für: WEG Industries, Unternehmen aus Brasilien West End Games, Spielehersteller Wirtschaftsverband Erdöl und Erdgasgewinnung Wohnungseigentumsgesetz Wohnungseigentümergemeinschaft Wolfgang Ernst Gymnasium, Büdingen Wolfram …   Deutsch Wikipedia

  • Mathematik — Rechenkunde; Mathe (umgangssprachlich); Rechnen (umgangssprachlich) * * * Ma|the|ma|tik [matema ti:k], die; : Wissenschaft, die sich mit den Beziehungen zahlenmäßiger oder räumlicher Verhältnisse beschäftigt: Mathematik studieren. Zus.:… …   Universal-Lexikon

  • Bogenlänge (Mathematik) — Die Länge ist in der Mathematik eine Eigenschaft, die Strecken, Wegen und Kurven zugeordnet werden kann. Die Länge einer Kurve wird auch als Bogenlänge oder Rektifikationslinie bezeichnet. Inhaltsverzeichnis 1 Längen von Strecken 2 Längen von… …   Deutsch Wikipedia

  • Rektifikation (Mathematik) — Die Länge ist in der Mathematik eine Eigenschaft, die Strecken, Wegen und Kurven zugeordnet werden kann. Die Länge einer Kurve wird auch als Bogenlänge oder Rektifikationslinie bezeichnet. Inhaltsverzeichnis 1 Längen von Strecken 2 Längen von… …   Deutsch Wikipedia

  • Rektifizierbarer Weg — Die Länge ist in der Mathematik eine Eigenschaft, die Strecken, Wegen und Kurven zugeordnet werden kann. Die Länge einer Kurve wird auch als Bogenlänge oder Rektifikationslinie bezeichnet. Inhaltsverzeichnis 1 Längen von Strecken 2 Längen von… …   Deutsch Wikipedia

  • Integrator (Mathematik) — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Kurve (Mathematik) — In der Mathematik ist eine Kurve ein eindimensionales Objekt. Eindimensional bedeutet dabei informell, dass man sich auf der Kurve nur in einer Richtung (bzw. der Gegenrichtung) bewegen kann. Ob die Kurve in der zweidimensionalen Ebene liegt… …   Deutsch Wikipedia

  • Geschichte der Mathematik — Die Geschichte der Mathematik reicht zurück bis ins Altertum. Inhaltsverzeichnis 1 Mathematik der alten Ägypter und Babylonier 1.1 Ägypten 1.2 Babylon 2 Mathem …   Deutsch Wikipedia

  • Vektor (Mathematik) — Ein Vektor (lat. vector „jemand, der trägt, zieht oder befördert“; zu lat. vehere = fahren) ist in der Mathematik ein Element eines Vektorraums. Das bedeutet unter anderem, dass sich beliebige zwei Vektoren durch Addition zu einem dritten Vektor… …   Deutsch Wikipedia

  • Topologie (Objekt der Mathematik) — Die Topologie (gr. τόπoς tópos „Ort“, „Platz“ und logie) oder Analysis situs, wie sie früher meistens genannt wurde, ist ein Teilgebiet der Mathematik. Sie ist im Wesentlichen eine Schöpfung des 20. Jahrhunderts und trotzdem bereits seit… …   Deutsch Wikipedia


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.