Äquivalenzumformung


Äquivalenzumformung

In der Mathematik bezeichnet Äquivalenzumformung (lat. aequus = gleich; valere = wert sein) eine Umformung einer Gleichung bzw. Ungleichung, die den Wahrheitswert unverändert lässt (logische Äquivalenz). Die umgeformte logische Aussage ist also für dieselbe Variablenbelegung wahr wie die ursprüngliche Aussage. Äquivalenzumformungen können durch Anwendung der inversen Operation wieder ohne Probleme rückgängig gemacht werden. Äquivalenzumformungen sind die wichtigste Methode zum Lösen von Gleichungen und Ungleichungen.

Inhaltsverzeichnis

Äquivalenzumformungen von Gleichungen

Eine Äquivalenzumformung ist beispielsweise die Addition oder Subtraktion eines Terms auf beiden Seiten. Subtrahiert man von der Gleichung

x+5=7\;

die Zahl 5 (indem man die Zahl auf beiden Seiten subtrahiert), erhält man die Gleichung

x=2\! .

Die Multiplikation oder Division eines Terms auf beiden Seiten der Gleichung, solange dieser ungleich 0 ist, ist ebenfalls eine Äquivalenzumformung.

Zu beachten ist, dass die Multiplikation mit Null oder Division durch Null oft versteckt auftritt; so ist beispielsweise die Multiplikation mit x − 1 keine Äquivalenzumformung, da dieser Multiplikator im Falle x = 1 eben Null sein kann. Allerdings kann man durch Fallunterscheidung sicherstellen, dass eine Multiplikation oder Division mit Null nicht stattfindet: Fälle, in denen ein Multiplikator oder Divisor Null ist, sind gesondert zu untersuchen; ansonsten sind die umgeformten Aussagen nur unter der einer entsprechenden Zusatzvoraussetzung (also nicht allgemein) zueinander äquivalent.

Ebenfalls keine Äquivalenzumformung ist das Quadrieren, so hat beispielsweise die Gleichung x = 2 eine reelle Lösung, die quadrierte Gleichung x2 = 4 hingegen zwei reelle Lösungen (nämlich +2 und -2).

Generell ist die Anwendung einer injektiven Funktion auf beide Seiten einer Gleichung eine Äquivalenzumformung; obiges Beispiel der Subtraktion von 5 auf beiden Seiten entspricht der Anwendung der Funktion t\mapsto t-5.

Äquivalenzumformungen von Ungleichungen

Bei Ungleichungen ist zu beachten, dass bei Multiplikation mit bzw. Division durch eine negative Zahl die Ordnungsrelation die Richtung ändert. Multipliziert man beispielsweise die Ungleichung

x>y\!

mit -5, so erhält man die äquivalente Ungleichung

 -5x < -5y \! .

Division durch -5 liefert wieder die ursprüngliche Ungleichung.

Generell ist die Anwendung einer streng monotonen Funktion auf beide Seiten einer Ungleichung eine Äquivalenzumformung; bei streng monoton steigenden Funktionen bleibt die Richtung der Ordnungsrelation erhalten; bei streng monoton fallenden Funktionen ändert die Ordnungsrelation die Richtung. Obiges Beispiel der Multiplikation mit -5 auf beiden Seiten entspricht der Anwendung der streng monoton fallenden Funktion t\mapsto -5t.

Multipliziert man eine Ungleichung mit einer Zahl, deren Vorzeichen nicht bekannt ist, so ist eine Fallunterscheidung erforderlich. So möchte man beispielsweise die Ungleichung

\frac{x+3}{x-2} < 2

gerne mit x − 2 multiplizieren, aber es ist nicht bekannt, ob x > 2 oder x < 2 gilt (der Fall x = 2 ist auszuschließen, da dann die linke Seite der Ungleichung nicht einmal definiert wäre). Falls x > 2 gilt, ergibt sich also x + 3 < 2x − 4, im Fall x < 2 dagegen x + 3 > 2x − 4. Somit ist die gegebene Ungleichung insgesamt äquivalent zu

\bigl(x>2{\rm\ und\ }x+3 < 2x-4\bigr){\rm\ oder\ }\bigl(x<2{\rm\ und\ }x+3 > 2x-4\bigr)

dies wiederum zu

\bigl(x>2{\rm\ und\ }7 < x\bigr){\rm\ oder\ }\bigl(x<2{\rm\ und\ }7 > x\bigr).

insgesamt also

x < 2 oder x > 7.

Anstatt die logischen Kombinationen wie hier im Hinblick auf die Äquivalenz gemeinsam abzuhandeln, ist es üblich, die Fälle nacheinander und getrennt zu bearbeiten und am Ende zusammenzufassen.

Notation

Äquivalenzumformungen werden meist mit einem Äquivalenzpfeil ⇔ (Unicode U+21D4) bezeichnet. Angewendet auf obiges Beispiel also:

x+5=7 \Leftrightarrow x=2\!

Darstellung der Umformungsoperation: Insbesondere in der Schulmathematik wird bei Äquivalenzumformungen oft mit einem senkrechten Strich hinter der (Un-)Gleichung dargestellt, welche Operation als nächste auf beide Seiten der (Un-)Gleichung angewendet werden soll. Die obigen Beispiele schreiben sich dann in der Form

x+5=7\;\;\;\;\;\;\;\;|-5
x=2\;

bzw.

x>y\;\;\;\;\;\;\;\;\;\;\;\;|\cdot (-5)
 -5x < -5y\; .

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Inversionsgesetz — In der Mathematik bezeichnet Äquivalenzumformung (lat. aequus = gleich; valere = wert sein) eine Umformung einer Gleichung bzw. Ungleichung, die den Wahrheitswert unverändert lässt (logische Äquivalenz). Die umgeformte logische Aussage ist also… …   Deutsch Wikipedia

  • Äquivalente Umformung — In der Mathematik bezeichnet Äquivalenzumformung (lat. aequus = gleich; valere = wert sein) eine Umformung einer Gleichung bzw. Ungleichung, die den Wahrheitswert unverändert lässt (logische Äquivalenz). Die umgeformte logische Aussage ist also… …   Deutsch Wikipedia

  • Gleichungssystem — Dieser Artikel befasst sich mit mathematischen Gleichungen; Zu chemischen Reaktionsgleichungen siehe ebenda; Zu Gleichungen aus der Volkswirtschaft siehe Gleichung (Volkswirtschaft). In der Mathematik ist eine Gleichung eine Aussage, in der die… …   Deutsch Wikipedia

  • Identitätsgleichung — Dieser Artikel befasst sich mit mathematischen Gleichungen; Zu chemischen Reaktionsgleichungen siehe ebenda; Zu Gleichungen aus der Volkswirtschaft siehe Gleichung (Volkswirtschaft). In der Mathematik ist eine Gleichung eine Aussage, in der die… …   Deutsch Wikipedia

  • Nichtlineare Gleichung — Dieser Artikel befasst sich mit mathematischen Gleichungen; Zu chemischen Reaktionsgleichungen siehe ebenda; Zu Gleichungen aus der Volkswirtschaft siehe Gleichung (Volkswirtschaft). In der Mathematik ist eine Gleichung eine Aussage, in der die… …   Deutsch Wikipedia

  • Lösen von Gleichungen — Inhaltsverzeichnis 1 Umformung von Gleichungen 1.1 Erlaubte und eingeschränkt erlaubte Umformungen 2 Polynomgleichungen 2.1 Gleichungen vom Grad 1 …   Deutsch Wikipedia

  • Definitionsbereich — In der Mathematik versteht man unter Definitionsmenge oder Definitionsbereich jene Teilmenge einer Grundmenge, für die im jeweiligen Zusammenhang eine wohldefinierte Aussage möglich ist. In der Schulmathematik wird die Definitionsmenge oft mit… …   Deutsch Wikipedia

  • Domäne (Mathematik) — In der Mathematik versteht man unter Definitionsmenge oder Definitionsbereich jene Teilmenge einer Grundmenge, für die im jeweiligen Zusammenhang eine wohldefinierte Aussage möglich ist. In der Schulmathematik wird die Definitionsmenge oft mit… …   Deutsch Wikipedia

  • Dreiecksungleichung — Die Dreiecksungleichung ist in der Geometrie ein Satz, der besagt, dass eine Dreiecksseite höchstens so lang wie die Summe der beiden anderen Seiten ist. Das „höchstens“ beschreibt hierin den Sonderfall der Gleichheit. Die Dreiecksungleichung… …   Deutsch Wikipedia

  • Goniometrische Gleichung — Eine trigonometrische Gleichung (auch goniometrische Gleichung) ist eine Gleichung, in der die zu bestimmende Variable nur im Argument von trigonometrischen Funktionen (Winkelfunktionen) vorkommt. Bei der Lösung dieser Gleichungen sind die… …   Deutsch Wikipedia