Ives-Stilwell-Experiment


Ives-Stilwell-Experiment

Das Ives-Stilwell-Experiment war das erste Experiment, mit dem der transversale Dopplereffekt und somit die aus der speziellen Relativitätstheorie folgende Zeitdilatation direkt nachgewiesen werden konnte. Zusammen mit dem Michelson-Morley-Experiment und dem Kennedy-Thorndike-Experiment ist es eines der grundlegenden Experimente der speziellen Relativitätstheorie, aus denen die gesamte Theorie hergeleitet werden kann.[1] Ähnliche Experimente zur Messung des rel. Dopplereffekts sind die Mößbauer-Rotor-Experimente und moderne Ives-Stilwell-Experimente in Speicherringen. Eine andere Methode ist die Messung der Zeitdilatation bewegter Teilchen. (vgl. auch Tests der speziellen Relativitätstheorie).

Inhaltsverzeichnis

Ives-Stilwell-Experiment

Geschichte

Joseph Larmor (1900) und Hendrik Antoon Lorentz (1904) stellten die Lorentz-Transformation auf, um die Unentdeckbarkeit eines ruhenden Äthers zu erklären. Dabei bemerkte Larmor, dass die veränderte Zeitkoordinate so verstanden werden kann, dass Prozesse bei bewegten Objekten im Äther langsamer ablaufen. Albert Einstein (1905) konnte zeigen, dass dieser Effekt eine notwendige Konsequenz der aus dem Relativitätsprinzip und der Konstanz der Lichtgeschwindigkeit gefolgerten Relativität der Zeit ist, und nichts mit einem Äther zu tun hat. Die Zeitdilatation führt nach Einstein zu einer Modifikation des longitudinalen Dopplereffekts, wobei zusätzlich ein Effekt in transversaler Richtung auftritt. 1907 schlug Einstein ein Experiment mit Hilfe des von Kanalstrahlen emittierten Lichtes vor, um diesen Effekt nachzuweisen.[2]

Erst 1938 konnten die damit zusammenhängenden technischen Probleme durch Herbert E. Ives und G. R. Stilwell überwunden werden. Es ergab sich nun ein positiver Effekt, der der Vorhersage der speziellen Relativitätstheorie entsprach. 1941 führt sie das Experiment mit größerer Genauigkeit noch einmal durch. (Ives selbst war übrigens ein Gegner der Relativitätstheorie und verwies auf die Bestätigung des „Äthers von Larmor und Lorentz“. Diese Theorie ist jedoch, im Vergleich zur speziellen Relativitätstheorie, konzeptionell überholt und wird nicht mehr in Betracht gezogen.) [3] [4] Experimente dieser Art werden in teils veränderter Form bis heute wiederholt. Beispielsweise von Otting (1939)[5], Mandelberg, et al. (1962)[6],

Während bei diesem Test der transversale Dopplereffekt aus dem longitudinalen sozusagen herausgefiltert wurde, konnte 1979 auch ein „rein transversaler“ Test durchgeführt werden.[7]

Durchführung

Ives verzichtete darauf, den durch die Zeitdilatation veränderten Dopplereffekt im rechten Winkel zur Bewegungsrichtung der Kanalstrahlen zu beobachten, da ein Einfluss des longitudinalen Dopplereffekts kaum auszuschließen war. Deswegen entwickelte er eine Methode, um Licht in longitudinaler Ausbreitungsrichtung der Kanalstrahlen zu beobachten. Dabei werden drei Lichtstrahlen verglichen, die aus unbewegten, sich nähernden, und sich entfernenden Kanalstrahlen stammen.

Gemäß klassischem Dopplereffekt müssten die Frequenzen von sich in- und entgegen der Bewegungsrichtung ausbreitendem Licht um f'/f = c/(c \pm v) verschoben sein, wo c die Lichtgeschwindigkeit und v die Geschwindigkeit der Kanalstrahlen ist. Wenn dies auf die Wellenlängen übertragen wird, ergibt der klassische Dopplereffekt rot- und blauverschobene Wellenlängen mit den Werten 1 + v / c und 1 − v / c. Wenn alle drei Wellenlängen (rotverschobene, blauverschobene, unveränderte) auf einer linearen Skala markiert werden, müssten diese Wellenlängen gemäß der klassischen Theorie in völlig gleichen Abständen zu finden sein.

Berücksichtigt man jedoch die Zeitdilatation, müssten die beiden äußeren Markierungen (bezüglich der unbewegten zentralen Markierung) etwas verschoben sein. Diese Verschiebung müsste exakt der entsprechen, welche auch in transversaler Richtung auftreten würde. Ives und Stilwell fanden tatsächlich eine signifikante Verschiebung des Schwerpunkts der drei Markierungen, in Übereinstimmung mit dem relativistischen Dopplereffekt.

Mößbauer-Rotor-Experiment

Relativistischer Dopplereffekt

Ein genauerer Nachweis des relativistischen Dopplereffekts gelang mit den Mößbauer-Rotor-Experimenten. Von einer Quelle, angebracht in der Mitte einer rotierenden Scheibe, werden Gammastrahlen an einen Empfänger am Rand gesendet (wobei Spielarten davon auch umgekehrt angeordnet waren). Aufgrund der Rotationsgeschwindigkeit des Empfängers sinkt die Absorptionsfrequenz, wenn ein transversaler Dopplereffekt vorliegt. Tatsächlich konnte ein solcher Effekt unter Benutzung des Mößbauer-Effekts nachgewiesen werden. Die maximale Abweichung lag bei 10−5, während sie bei den Ives-Stilwell-Experimenten noch bei 10−2 lag. Solche Experimente wurden von Hay et al. (1960),[8] Champeney et al. (1963, 1965),[9][10] Kündig (1963),[11] durchgeführt.

Isotropie der Lichtgeschwindigkeit

Mößbauer-Rotor-Experimente wurden ebenfalls dazu benutzt, um eine mögliche Anisotropie der Lichtgeschwindigkeit bzw. einen Ätherwind im Sinne des Michelson-Morley-Experiments festzustellen. Dies beruht darauf, dass der Ätherwind einen störenden Einfluss auf die Absorptionsfrequenz haben müsste. Es ergab sich wie in allen anderen Ätherdriftexperimenten ein negatives Resultat, wobei die Genauigkeit eine maximale Ätherdrift von 3–4 m/s zuließ. Dazu zählen die Experimente von Champeney und Moon (1961),[12] Champeney et al. (1963)[13] und Turner & Hill (1964).[14]

Moderne Experimente

Schnell bewegte Uhren

In modernen Experimenten, welche eine gewisse Ähnlichkeit mit den Ives-Stilwell-Experimenten besitzen, wird eine weit größere Genauigkeit erzielt. Dabei werden Lithiumionen, deren ausgesandte Frequenzen genau bestimmbar sind und somit als optischen Atomuhren fungieren, in Schwerionenspeicherringen wie dem Testspeicherring im Max-Planck-Institut für Kernphysik (MPIK), auf 3-6% der Lichtgeschwindigkeit beschleunigt. Der dabei auftretende der Dopplereffekt wird ausgewertet, wofür Sättigungsspektroskopie angewendet wird.

Autor Jahr maximale Abweichung
von der Zeitdilatation
Grieser et al.[15] 1994 \leq1\times10^{-6}
Saathoff et al.[16] 2003 \leq2{,}2\times10^{-7}
Reinhardt et al.[17] 2007 \leq8{,}4\times10^{-8}

Langsam bewegte Uhren

Inzwischen ist es gelungen, die Zeitdilatation optischer Atomuhren auch bei alltäglichen Geschwindigkeiten nachzuweisen. Chou et al. (2010) benutzten dafür Aluminiumionen, die in einem 75 m langen, phasenstabililisierten Lichtwellenleiter hin- und her bewegt wurden, und Signale einer bestimmten Frequenz übermittelten, wobei die Genauigkeit dieser Uhren ∼10 − 17 betrug. Dadurch konnte die bei Geschwindigkeiten von unter 36 km/h (< 10 m/s) auftretende Verschiebung von ∼10 − 16 gemäß der relativistischen Zeitdilatation, durch Vergleich der Frequenz von bewegten und ruhenden Ionen gemessen werden.[18]

Siehe auch

Einzelnachweise

  1. Robertson, H. P.: Postulate versus Observation in the Special Theory of Relativity. In: Reviews of Modern Physics. 21, Nr. 3, 1949, S. 378-382. doi:10.1103/RevModPhys.21.378.
  2. Einstein, Albert: Über die Möglichkeit einer neuen Prüfung des Relativitätsprinzips. In: Annalen der Physik. 328, Nr. 6, 1907, S. 197–198.
  3. H. E. Ives, Stilwell, G. R.: An experimental study of the rate of a moving atomic clock. In: Journal of the Optical Society of America. 28, Nr. 7, 1938, S. 215. doi:10.1364/JOSA.28.000215.
  4. H. E. Ives, Stilwell, G. R.: An experimental study of the rate of a moving atomic clock. II. In: Journal of the Optical Society of America. 31, Nr. 5, 1941, S. 369. doi:10.1364/JOSA.31.000369.
  5. Otting, G.: Der quadratische Dopplereffekt. In: Physikalische Zeitschrift. 40, 1939, S. 681-687.
  6. Mandelberg, Hirsch I.; Witten, Louis: Experimental verification of the relativistic doppler effect. In: Journal of the Optical Society of America. 52, Nr. 5, 1962, S. 529. doi:10.1364/JOSA.52.000529.
  7. D. Hasselkamp, E. Mondry, A. Scharmann: Direct observation of the transversal Doppler-shift. In: Zeitschrift für Physik A; Hadrons and Nuclei. 289, Nr. 2, 1979, S. 151–155. doi:1979ZPhyA.289..151H.
  8. Hay, H. J.; Schiffer, J. P.; Cranshaw, T. E.; Egelstaff, P. A.: Measurement of the Red Shift in an Accelerated System Using the Mössbauer Effect in Fe57. In: Physical Review Letters. 4, Nr. 4, 1960, S. 165-166. doi:10.1103/PhysRevLett.4.165.
  9. Champeney, D. C.; Isaak, G. R.; Khan, A. M.: Measurement of Relativistic Time Dilatation using the Mössbauer Effect. In: Nature. 198, Nr. 4886, 1963, S. 1186-1187. doi:10.1038/1981186b0.
  10. Champeney, D. C.; Isaak, G. R.; Khan, A. M.: A time dilatation experiment based on the Mössbauer effect. In: Proceedings of the Physical Society. 85, Nr. 3, 1965, S. 583-593. doi:10.1088/0370-1328/85/3/317.
  11. Kündig, Walter: Measurement of the Transverse Doppler Effect in an Accelerated System. In: Physical Review. 129, Nr. 6, 1963, S. 2371-2375. doi:10.1103/PhysRev.129.2371.
  12. Champeney, D. C.; Moon, P. B.: Absence of Doppler Shift for Gamma Ray Source and Detector on Same Circular Orbit. In: Proceedings of the Physical Society. 77, Nr. 2, 1961, S. 350-352. doi:10.1088/0370-1328/77/2/318.
  13. Champeney, D. C.; Isaak, G. R.; Khan, A. M.: An 'aether drift' experiment based on the Mössbauer effect. In: Physics Letters. 7, Nr. 4, 1963, S. 241-243. doi:10.1016/0031-9163(63)90312-3.
  14. Turner, K. C.; Hill, H. A.: New Experimental Limit on Velocity-Dependent Interactions of Clocks and Distant Matter. In: Physical Review. 134, Nr. 1B, 1964, S. 252-256. doi:10.1103/PhysRev.134.B252.
  15. Grieser, R.; Klein, R.; Huber, G.; Dickopf, S.; Klaft, I.; Knobloch, P.; Merz, P.; Albrecht, F.; Grieser, M.; Habs, D.; Schwalm, D.; Kühl, T.: A test of special relativity with stored lithium ions. In: Applied Physics B Lasers and Optics. 59, Nr. 2, 1994, S. 127-133. doi:10.1007/BF01081163.
  16. Saathoff, G.; Karpuk, S.; Eisenbarth, U.; Huber, G.; Krohn, S.; Horta, R. Muñoz; Reinhardt, S.; Schwalm, D.; Wolf, A.; Gwinner, G.: Improved Test of Time Dilation in Special Relativity. In: Phys. Rev. Lett.. 91, Nr. 19, 2003, S. 190403. doi:10.1103/PhysRevLett.91.190403.
  17. Reinhardt, S.; Saathoff, G.; Buhr, H.; Carlson, L. A.; Wolf, A.; Schwalm, D.; Karpuk, S.; Novotny, C.; Huber, G.; Zimmermann, M.; Holzwarth, R.; Udem, T.; Hänsch, T. W.; Gwinner, G.: Test of relativistic time dilation with fast optical atomic clocks at different velocities. In: Nature Physics. 3, Nr. 12, 2007, S. 861-864. doi:10.1038/nphys778.
  18. Chou, C. W.; Hume, D. B.; Rosenband, T.; Wineland, D. J.: Optical Clocks and Relativity. In: Science. 329, Nr. 5999, 2010, S. 1630-1633. Bibcode: 2010Sci...329.1630C. doi:10.1126/science.1192720.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Ives–Stilwell experiment — The Ives–Stilwell experiment exploits the Transverse Doppler effect (TDE) described by Albert Einstein in his 1905 paper.Einstein subsequently suggested an experiment based on the measurement of the relative frequencies of light perceived as… …   Wikipedia

  • Stilwell — or Stillwell may refer to: People* Arthur Stilwell, Kansas City Southern Railway founder * Eric A. Stillwell, American television producer * Frank Stilwell, Old West outlaw * G. R. Stilwell, of the Ives–Stilwell experiment * Heather Stilwell,… …   Wikipedia

  • Ives — ist der Name bzw. Familienname folgender Personen: Ives, englischer Bischof († 1003), begraben in St Ives (Südostengland) St. Ives, einer kornischen Heiligen Burl Ives (1909 1995), US amerikanischer Folk Sänger, Autor und Schauspieler Charles… …   Deutsch Wikipedia

  • Ives — There are several people and things named Ives:* Burl Ives, American singer, author, and actor * Charles Ives, U. S. classical music composer * Clarrie Ives, Australian rugby league footballer * Clay Ives, Canadian born American luger * Currier… …   Wikipedia

  • Herbert E. Ives — Herbert Eugene Ives Herbert Eugene Ives (* 21. Juli 1882 in Philadelphia; † 13. November 1953) war ein US amerikanischer Physiker und Erfinder. Herbert E. Ives studierte an der University of Pennsylvania und an der Johns Hopkins University, wo er …   Deutsch Wikipedia

  • Kennedy-Thorndike-Experiment — Das Kennedy Thorndike Experiment sollte nachweisen, ob die Änderung der Geschwindigkeit des Beobachters in verschiedenen Inertialsystemen einen Einfluss auf die Ausbreitung des Lichtes hat. Damit sollte die Existenz der Zeitdilatation der… …   Deutsch Wikipedia

  • Herbert E. Ives — Infobox Engineer image size = 150px caption = PAGENAME name = PAGENAME nationality = birth date =July 21, 1882 birth place =Philadelphia, Pennsylvania death date = November 13, 1953 death place = education =University of Pennsylvania spouse =… …   Wikipedia

  • Michelson–Morley experiment — Box plots based on data from the Michelson–Morley experiment The Michelson–Morley experiment was performed in 1887 by Albert Michelson and Edward Morley at what is now Case Western Reserve University in Cleveland, Ohio. Its results are generally… …   Wikipedia

  • Michelson-Morley-Experiment — Wenn elektromagnetische Wellen an einen ruhenden Äther gebunden wären, müsste man die Eigenbewegung von Erde und Sonne als Ätherwind messen können. Das Michelson Morley Experiment war ein physikalisches Experiment, das von dem deutsch… …   Deutsch Wikipedia

  • Fizeau-Experiment — Aufbau des Fizeau Experiments aus dem Jahr 1851 Das Fizeau Experiment wurde von Hippolyte Fizeau 1851 durchgeführt, um die relativen Lichtgeschwindigkeiten im bewegten Wasser zu messen. Nach der Aussage Albert Einsteins war das Experiment… …   Deutsch Wikipedia