Ortskurve (Systemtheorie)


Ortskurve (Systemtheorie)
Ortskurve als Linie in der komplexen Zahlenebene

Unter einer Ortskurve versteht man in der Systemtheorie die graphische Darstellung einer von einem reellen Parameter abhängigen komplexen System-Größe.

Mathematisch ist die Ortskurve folgendermaßen definiert:

Die von einem parameterabhängigen komplexen Zeiger \underline z=\underline z(t) in der komplexen Zahlenebene beschriebene Bahn heißt Ortskurve[1].

\underline z = \mathrm R\mathrm e(\underline z) + \mathrm j \mathrm I\mathrm m (\underline z) = x(t) + \mathrm j y(t)
mit der imaginären Einheit j. Der Parameter t ist dabei Element eines halboffenen, offenen oder geschlossenen Intervalls der reellen Zahlen. Im dargestellten Beispiel gilt: a \le t \le b.

Ortskurven finden in verschiedenen technischen Disziplinen, insbesondere der Regelungstechnik, Nachrichtentechnik, Hochfrequenztechnik, Energietechnik und Akustik (oder anderen Anwendungen der Schwingungslehre) Anwendung. Sie dienen dazu, die Eigenschaften oder das Verhalten eines technischen Systems wie beispielsweise einer Regelung oder einer elektrischen Schaltung mit graphischen Mitteln darzustellen.

Typische Beispiele für komplexe System-Größen, die durch Ortskurven dargestellt werden, sind

Parameter ist häufig, aber nicht zwingend, die Frequenz. Typische Parameter in der Theorie der Leitungen sind beispielsweise die Leitungslänge oder das Anpassverhältnis. Ebenso wird die Impedanz eines Widerstands, einer Spule oder eines Kondensators bei konstanter Frequenz als Funktion störender (parasitärer) Bauelementgrößen (zum Beispiel hat eine reale Spule nicht nur die gewollte Induktivität sondern auch einen kleinen ohmschen Widerstand und eine kleine Kapazität) angegeben.

Inhaltsverzeichnis

Gleichungen für die darzustellende komplexe System-Größe

In Systemen, die aus endlich vielen konzentrierten Bauelementen bestehen, kann die System-Größe als gebrochen rationale Funktion in der folgenden Form dargestellt werden[2]:

\underline O(t) = \frac{\underline A +\underline B t + \underline C t^2 + \underline D t^3 + \ldots}{\underline a + \underline b t + \underline c t^2 + \underline d t^3 + \ldots}.
Hierbei ist t ein reeller Parameter, und \underline A, …, \underline D, … und \underline a, …, \underline d, … sind komplexe Größen. Der Unterstrich zeigt an, dass sie komplex sind.

Wird als Parameter die Frequenz betrachtet, ist es üblich, als unabhängige Variable die Kreisfrequenz ω = 2πf zu wählen. In diesem Fall stellt folgende Gleichung[3] die System-Größe dar:

H(\mathrm j\omega) = \frac{Y(\mathrm j\omega)}{X(\mathrm j\omega)} = \frac{b_0 + b_1(\mathrm j\omega) + \ldots + b_{m}(\mathrm j\omega)^{m}}{a_0 + a_1(\mathrm j\omega) + \ldots + a_n(\mathrm j\omega)^{n}}.
Weil ω immer zusammen mit der imaginären Einheit j auftritt, hat es sich insbesondere in der Regelungstechnik eingebürgert, als Parameter das Produkt anzugeben. Die mitgeschriebene Einheit j macht deutlich, dass es sich um komplexe Größen handelt. Der Unterstrich kann entfallen.

Beispiele

Nachrichtentechnik

Ortskurve für den Frequenzgang eines RC-Tiefpasses. Sie stellt den komplexen Spannungsübertragungsfaktor dar (komplexer Quotient V der sinusförmigen Ausgangs- zur Eingangsspannung)

Ortskurven beschreiben das Übertragungsverhaltens von Schaltungen, die lineare phasendrehende Bauteile (Kondensatoren, Spulen) enthalten und als imaginäre Blindwiderstände behandelt werden. Typische Anwendungen sind Schwingkreise oder Filter, die elektrische Signale idealerweise nur bei bestimmten Frequenzen oder Frequenzbereichen passieren lassen und sonst sperren; siehe beispielsweise Tiefpass, Hochpass.

Der Frequenzgang eines Tiefpasses (siehe Abbildung) ist mit den Formelzeichen \underline V für den Quotient aus komplexen Ausgangs- \underline u_a (\mathrm j\omega) und komplexen Eingangssignal \underline u_e(\mathrm j\omega) und ω für die Kreisfrequenz folgender Ausdruck:

\underline V (\mathrm j \omega) = \frac{\underline u_a (\mathrm j\omega)}{\underline u_e (\mathrm j\omega)}.

Bei einem Tiefpass als RC-Glied lautet die Gleichung für den komplexen Spannungsübertragungsfaktor:

\underline V(\mathrm j\omega)= \frac{\underline u_a (\mathrm j\omega)}{\underline u_e (\mathrm j\omega)}
 = \frac{1}{1 + C R \mathrm j\omega}
.
Das Zähler-Polynom ist reduziert auf 1.

Die Ortskurve des Übertragungsfaktors erfüllt die Kreisgleichung eines Kreises mit dem Radius R = 0,5 um den Punkt M = 0,5+ 0 · j, denn es gilt:

\left| \underline{V}-\frac{1}{2} \right| = \left| \frac{1}{1+j \omega CR}-\frac{1}{2} \right| = \left| \frac{1-j\omega CR}{2 \cdot (1+j \omega CR)} \right| = \frac{1}{2}

Das in der Regelungstechnik vorkommende PT1-Glied kann als eine Kombination aus einem RC-Tiefpass mit der Zeitkonstante T=R\cdot C und einem frequenzunabhängigen Verstärker mit dem Verstärkungsfaktor K aufgefasst werden.

H(\mathrm j\omega) = \frac{K}{1 + T\mathrm j\omega}

Regelungstechnik

Ortskurve des Frequenzgangs eines PT2-Glied (K = 1; d < 1)

Die in der Regelungstechnik verwendete Ortskurve des Frequenzgangs wird auch Nyquist-Diagramm genannt. Harry Nyquist hat mit Hilfe dieser Ortskurve ein Stabilitätskriterium für Regelungen formuliert.

Die Ortskurve des Frequenzgangs wird sowohl für einzelne Bauteile als auch für Bauteilgruppen bis zur kompletten Kette des aufgeschnittenen Regelkreises gezeichnet und verwendet. Abgebildet ist die Kurve für ein PT2-Glied (Verstärker mit Verzögerung 2. Ordnung).

Der Frequenzgang dieses Glieds ist mit dem Verstärkungsfaktor K dem Dämpfungsmaß d und der Zeitkonstante T folgender Ausdruck:

H(\mathrm j\omega) = \frac{Y(\mathrm j\omega)}{X(\mathrm j\omega)} = \frac{K}{1 + 2 d T \mathrm j\omega - T^2 \omega^2}

Elektrische Energietechnik

Ortskurve der Impedanz Z (Reihenschaltung aus Induktivität jωL und variablem ohmschen Widerstand R(p))

In der Energietechnik ist die Frequenz des Stroms konstant, weshalb mit Ortskurven Übertragungsverhältnisse dargestellt und untersucht werden, die mit einem anderen Parameter als der Frequenz variieren. Als variable Größen im System kommen die Werte von ohmschen Widerständen, Spulen und Kondensatoren in Frage. Am häufigsten wird die Impedanz (Quotient aus komplexer Spannung u und komplexem Strom i oder der komplexe Leitwert (Quotient aus komplexem Strom und komplexer Spannung) dargestellt.

Die komplexe Gleichung für die Impedanz ist mit dem Parameter p (in R = p · R0) und dem Zeichen \underline Z für die Impedanz (siehe Abbildung) folgender Ausdruck:

\underline Z(p) =  L\mathrm j \omega + R_0 p
Das Nenner-Polynom ist reduziert auf 1.

Das Erstellen von Ortskurven

Die mit Ortskurven darstellbaren Beziehungen lassen sich durch Messung von Betrag und Phase ermitteln, und die Kurven lassen sich punktweise mit den Messwertpaaren in der komplexe Ebene zeichnen. Die erste und die dritte der Abbildungen zeigen, dass Ortskurven oftmals eine einfache geometrische Form haben und aus wenigen Messwertpaaren gefolgert werden können.

Dieser Tatbestand macht es auch möglich, solche einfachen Ortskurven (Geraden, Kreise, Parabeln) rein theoretisch anzugeben, was insbesondere bei qualitativen Betrachtungen genügen kann. Ihre Inversionen haben ebenfalls einfache geometrische Formen.

Inversion von Ortskurven

Die Inversion von Ortskurven besitzt beispielsweise Bedeutung bei der Kehrwertbildung zur Berechnung des Leitwertes \underline Y aus der Impedanz \underline Z

\underline Y = \frac{1}{\underline Z}

Sie ist ein Spezialfall der Möbiustransformation und kann in einfachen Fällen mithilfe folgender Grundregeln und der Inversion einzelner Punkte grafisch durchgeführt werden.

ursprüngliche Ortskurve invertierte Ortskurve
Gerade durch den Ursprung Gerade durch den Ursprung
Gerade nicht durch den Ursprung Kreis durch den Ursprung
Kreis durch den Ursprung Gerade nicht durch den Ursprung
Kreis nicht durch den Ursprung Kreis nicht durch den Ursprung

Siehe auch

Literatur

  • Wilfried Weißgerber: Elektrotechnik für Ingenieure 2, 5 Ortskurven. 6. Auflage. Vieweg + Teubner, 2007, ISBN 978-3-8348-0191-3.
  • Heinz Unbehauen: Regelungstechnik 1. 14. Auflage. Vieweg + Teubner, 2007, ISBN 978-3-3848-0230-9, S. 80–86.

Einzelnachweise

  1. Lothar Papula: Mathematische Formelsammlung: Für Ingenieure und Naturwissenschaftler. Vieweg, Wiesbaden 2006, ISBN 978-3-8348-0156-2 (Eingeschränkte Vorschau in der Google Buchsuche)
  2. Wilfried Weißgerber: Elektrotechnik für Ingenieure 2. 5 Ortskurven. 6. Auflage. Vieweg + Teubner, 2007, ISBN 978-3-8348-0191-3.
  3. zum Beispiel in Jan Lunze: Regelungstechnik 1. Springer, 2007, ISBN 978-3-540-70790-5, S. 224.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Ortskurve — Der Begriff Ortskurve wird in verschiedenen Bereichen verwendet: in der Kurvendiskussion, siehe Ortskurve (Kurvendiskussion) in der Systemtheorie, der Elektrotechnik und der Regelungstechnik, siehe Ortskurve (Systemtheorie) in der ebenen… …   Deutsch Wikipedia

  • Systemtheorie (Ingenieurwissenschaften) — Der Begriff der Systemtheorie wird in verschiedenen wissenschaftlichen Disziplinen angewendet und hat in Bezug auf den Primärbegriff System keine einheitliche Bedeutung. Systeme können sich als physikalische, ökologische, ökonomische, soziale… …   Deutsch Wikipedia

  • Phasengang — Der Phasengang, der auch Phasenfrequenzgang oder Phasenmaß heißt, englisch: phase response, wird meistens im Zusammenhang mit dem Amplitudengang oder Amplitudenfrequenzgang betrachtet. Beispiel eines Phasengangs eines Tiefpasses Aus der… …   Deutsch Wikipedia

  • Phasor — Phasoren bei einer RLC Serienschaltung in der komplexen Ebene Der Phasor (engl. phasor) oder die komplexe Amplitude wird bei der komplexen Darstellung von sinus bzw. kosinusförmig zeitabhängigen Größen verwendet. Er fasst die Amplitude A und den… …   Deutsch Wikipedia

  • Regelkreis — Blockschaltbild eines einfachen Standardregelkreises, bestehend aus der Regelstrecke, dem Regler und einer negativen Rückkopplung der Regelgröße y (auch Istwert). Die Regelgröße y wird mit der Führungsgröße (Sollwert) w verglichen. Die… …   Deutsch Wikipedia

  • Regelsystem — Blockschaltbild eines einfachen Standardregelkreises, bestehend aus der Regelstrecke …   Deutsch Wikipedia

  • Smith-Prädiktor — Blockschaltbild eines einfachen Standardregelkreises, bestehend aus der Regelstrecke …   Deutsch Wikipedia

  • Störgrößenaufschaltung — Blockschaltbild eines einfachen Standardregelkreises, bestehend aus der Regelstrecke …   Deutsch Wikipedia

  • Regelungstechnik — ist eine Ingenieurwissenschaft, die alle in der Technik vorkommenden Regelungs Vorgänge behandelt. Sie tangiert oder ist Bestandteil zahlreicher anderer Wissenschaften wie Kybernetik, Robotik, Automatisierungstechnik, Prozessinformatik,… …   Deutsch Wikipedia

  • Nyquist-Kriterium — Die Nyquist Ortskurve für . Das Stabilitätskriterium von Nyquist (auch Strecker Nyquist Kriterium, nach Harry Nyquist und Felix Strecker) ist ein Begriff aus dem Bereich der Regelungstechnik und der Systemtheorie. Das Nyquist Kriterium beschreibt …   Deutsch Wikipedia