Dichte Teilmenge


Dichte Teilmenge

Der Begriff der dichten Teilmenge eines metrischen oder topologischen Raumes ist ein mathematischer Fachbegriff und wird in seiner allgemeinen Form im mathematischen Fachgebiet Topologie definiert. Er wird in vielen Teildisziplinen der Mathematik, etwa der Analysis, der Funktionalanalysis und der Numerik angewandt, zum Beispiel bei der Approximation von stetigen Funktionen durch Polynome.

Man sagt von einer Teilmenge, sie liege dicht in einem metrischen Raum, wenn man jeden Punkt des Gesamtraums beliebig genau durch einen Punkt aus der Teilmenge approximieren kann. So bilden die rationalen Zahlen \Bbb{Q} eine dichte Teilmenge in der Menge der reellen Zahlen \Bbb{R}. Das bedeutet, dass man irrationale Zahlen beliebig genau durch rationale Brüche beziehungsweise durch endliche Dezimalzahlen approximieren kann. Allgemeiner sagt man von einer Teilmenge A, sie liege dicht in einem topologischen Raum X, wenn jede Umgebung eines beliebigen Punktes x aus X immer auch ein Element aus A enthält.

Ein Spezialfall dieses topologischen Begriffes „dicht“ ergibt sich durch die Anwendung auf geordnete Mengen. Eine Teilmenge S einer streng totalgeordneten Menge (M, < ) heißt dicht (in M), wenn es zu allen x und y aus M mit x < y ein z aus S gibt, so dass x < z < y. Dieser Spezialfall ergibt sich durch die Ordnungstopologie auf M und wird dort näher erläutert. Der vorliegende Artikel behandelt den allgemeineren topologischen Begriff.

Inhaltsverzeichnis

Definition

Sei (X,T) ein topologischer Raum. Eine Teilmenge M liegt genau dann dicht in X, wenn eine der folgenden gleichwertigen Aussagen zutrifft:

  • Der Abschluss von M stimmt mit X überein.
  • Es gibt keine abgeschlossene Teilmenge von X außer X selbst, die M enthält.
  • Jede Umgebung in X enthält einen Punkt aus M.

Beispiele

Zusammenhang mit anderen Begriffen

Ein Raum, der eine abzählbare dichte Teilmenge besitzt heißt separabel.

Ein komplementäres Konzept ist das der nirgends dichten Mengen, deren Abschluss ein leeres Inneres hat. Ein weiteres verwandtes Konzept ist die Unterscheidung von fetten und mageren Mengen.

Literatur

  • Boto von Querenburg: Mengentheoretische Topologie. 3. neu bearbeitete und erweiterte Auflage. Springer-Verlag, Berlin u. a. 2001, ISBN 3-540-67790-9 (Springer-Lehrbuch).
  • Thorsten Camps, Stefan Kühling, Gerhard Rosenberger: Einführung in die mengentheoretische und die algebraische Topologie. Heldermann, Lemgo 2006, ISBN 3-88538-115-X (Berliner Studienreihe zur Mathematik 15).

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Dichte (Begriffsklärung) — Dichte bezeichnet: Dichte (ohne weitere Zusätze) – physikalische Größe zur Beschreibung des Verhältnisses von Masse zu Volumen Ladungsdichte – physikalische Größe zur Beschreibung der Menge elektrischer Ladung pro Volumen, Fläche oder Länge… …   Deutsch Wikipedia

  • Adhärenzpunkt — Dies ist ein Glossar einiger Begriffe, die in dem Bereich der Mathematik vorkommen, der als Topologie bekannt ist. Dieses Glossar besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit allgemeinen Konzepten und der zweite Teil erklärt Typen …   Deutsch Wikipedia

  • Topologie Glossar — Dies ist ein Glossar einiger Begriffe, die in dem Bereich der Mathematik vorkommen, der als Topologie bekannt ist. Dieses Glossar besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit allgemeinen Konzepten und der zweite Teil erklärt Typen …   Deutsch Wikipedia

  • Topologie-Glossar — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik zur Löschung vorgeschlagen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel… …   Deutsch Wikipedia

  • Dicht (Mathematik) — Der Begriff der dichten Teilmenge eines metrischen oder topologischen Raumes ist ein mathematischer Fachbegriff und wird in seiner allgemeinen Form im mathematischen Fachgebiet Topologie definiert. Er wird in vielen Teildisziplinen der Mathematik …   Deutsch Wikipedia

  • Dicht (Topologie) — Der Begriff der dichten Teilmenge eines metrischen oder topologischen Raumes ist ein mathematischer Fachbegriff und wird in seiner allgemeinen Form im mathematischen Fachgebiet Topologie definiert. Er wird in vielen Teildisziplinen der Mathematik …   Deutsch Wikipedia

  • Separabel (Topologie) — Der mathematische Begriff separabel bezeichnet in der Topologie eine Eigenschaft von Räumen, die unter anderem Beweisführungen erleichtern kann. Oft kann man für Sätze über solche Räume auf Beweistechniken wie die Transfinite Induktion verzichten …   Deutsch Wikipedia

  • Separabler Hilbertraum — Der mathematische Begriff separabel bezeichnet in der Topologie eine Eigenschaft von Räumen, die unter anderem Beweisführungen erleichtern kann. Oft kann man für Sätze über solche Räume auf Beweistechniken wie die Transfinite Induktion verzichten …   Deutsch Wikipedia

  • Separabler Raum — Der mathematische Begriff separabel bezeichnet in der Topologie eine Eigenschaft von Räumen, die unter anderem Beweisführungen erleichtern kann. Oft kann man für Sätze über solche Räume auf Beweistechniken wie die Transfinite Induktion verzichten …   Deutsch Wikipedia

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia