Diesel-Prozeß


Diesel-Prozeß

Der Diesel-Kreisprozess (auch Gleichdruckprozess) ist der Vergleichsprozess für den Dieselmotor, der nach dem deutschen Ingenieur Rudolf Diesel benannt ist. Er zeichnet sich gegenüber dem Ottomotor durch eine etwa doppelt so hohe Verdichtung aus und erreicht deshalb einen größeren Wirkungsgrad.

Inhaltsverzeichnis

Weitere Beschreibung

Um nach der hohen Verdichtung bei der Verbrennung zu hohe Temperaturen und Drücke zu vermeiden, wird durch zeitgesteuerte Einspritzung des Brennstoffes die Wärmezufuhr in den ersten Teil der Expansionphase verlegt. Ursprünglich wurde eine Verbrennung bei konstantem Druck angestrebt, weshalb im Vergleichsprozess die Wärmezufuhr isobar verläuft. Die vier Prozessphasen sind:

Zustandsdiagramme und Daten aus einem Berechnungsbeispiel
Diesel-Prozess im p-v-Diagramm (Isentropen punktiert gezeichnet)
Diesel-Prozess im T-s-Diagramm (Isobaren punktiert gezeichnet)

Die vom Linienzug (1 → 2 → 3 → 4) umschlossene Fläche entspricht der spezifischen Arbeit.

Die Takte im Sinne der Bezeichnung "Viertaktmotor" stellen sich wie folgt dar:

  1. Ansaugen frischer Ladung: Linienzug 0 → 1
  2. Verdichten der Ladung: Linienzug 1 → 2
  3. Arbeiten (Verbrennung und Expansion): Linienzug 2 → 3 → 4
  4. Ausstoßen der verbrannten Ladung: Linienzug 4 → 1 → 0

Der im obigen p-v-Diagramm nicht eingezeichnete Punkt 0 befindet sich links von Punkt 1, unterhalb von Punkt 2, und entspricht dem oberen Totpunkt bei (idealisiertem) Umgebungsdruck. Beim Zweitaktmotor überlappen sich die Takte, der Punkt 0 entfällt.

Wirkungsgrad

Zustands- und Prozessdaten

Der Wirkungsgrad des Diesel-Prozesses ist abhängig vom Verdichtungsverhältnis

 \varepsilon = \frac{V_1}{V_2} dem Volldruckverhältnis  \varphi = \frac{V_3}{V_2} und dem Polytropenkoeffizienten \kappa=\frac{C_p}{C_V}.

Wir lesen aus der Abbildung die im Prozess zugeführte Wärme ab und nutzen als Arbeitsmedium das ideales Gas.

\begin{align}\mathrm{d}Q_{23}=C\mathrm{d}T\Rightarrow Q_{23}&=C_p(T_3-T_2)\\ &=\frac{C_p}{Nk}(p_3V_3-p_2V_2)\\ 
&=\frac{C_p}{Nk}p_2V_2(\frac{p_3}{p_2}\frac{V_3}{V_2}-1)\\ &=\frac{C_p}{Nk}p_2V_2(\varphi-1)=Q_{zu}.\end{align}

Analog liest man für die abgeführte Wärme ab:

\begin{align}\mathrm{d}Q_{41}=C\mathrm{d}T\Rightarrow Q_{41}&=C_V(T_1-T_4)\\ &=\frac{C_V}{Nk}(p_1V_1-p_4V_4)\\
 &=\frac{C_V}{Nk}V_1(p_1-p_4)=Q_{ab}.
\end{align}

Für den Wirkungsgrad findet man unter Verwendung der Polytropengleichung pVκ = const:

\begin{align}\eta_{Diesel}&=1+\frac{Q_{ab}}{Q_{zu}}=1+\frac{\frac{C_V}{Nk}V_1(p_1-p_4)}{\frac{C_p}{Nk}p_2V_2(\varphi-1)}\\
&=1+\frac{1}{\kappa\cdot\varepsilon(\varphi-1)}\left(\frac{p_1}{p_2}-\frac{p_4}{p_3}\right)\\
&=1-\frac{1}{\kappa\cdot\varepsilon(\varphi-1)}\left[\left(\frac{V_3}{V_1}\right)^{\kappa}-\left(\frac{V_2}{V_1}\right)^{\kappa}\right]\\ &=1-\frac{1}{\kappa\cdot\varepsilon(\varphi-1)}\left[\left(\varepsilon\varphi\right)^{\kappa}-\left(\varepsilon\right)^{\kappa}\right]\\
&=1 - \frac{\varepsilon^{\kappa-1}}{\kappa}\cdot{\frac{{\varphi^{\kappa}-1}}{\varphi-1}}
\end{align}


also

 \eta_{th,Diesel} = {1 - \frac{1}{\kappa \cdot{\varepsilon^{\kappa-1}}}}\cdot{\frac{{\varphi^{\kappa}-1}}{\varphi-1}}.

Für die Berechnung des hier als Beispiel gezeigten Prozesses wurde üblicherweise als Arbeitsmedium Luft als ideales Gas mit konstanter spezifischer Wärmekapazität und konstantem Isentropenexponent κ gewählt. Dabei verursacht die Vernachlässigung der chemischen Umsetzung (Sauerstoff + Brennstoff --> Kohlendioxid + Wasserdampf) den geringsten Fehler, weil Luft zu ca. 79 % aus Stickstoff besteht, der erhalten bleibt. Bei den auftretenden hohen Drücken verhält sich die Luft jedoch nicht mehr als ideales Gas (vergl. Realgasfaktor), und die spezifische Wärmekapazität ist bei 2000°C um ca. 30% höher als im Normzustand. Die Zustandsdiagramme und die Tabelle haben deshalb nur einen qualitativen Aussagewert.

Der reale Diesel-Motor

Die Abweichungen vom idealen Vergleichsprozess beim Diesel-Motor sind prinzipiell dieselben wie beim Otto-Motor. Erreichbar sind heute Wirkungsgrade von ca. 45%. In erster Linie ist die Wärmeübertragung an das Kühlwasser verantwortlich für den niedrigeren Druckverlauf bei der Expansion und die dadurch reduzierte Leistung. Die Kühlwasserwärme ist kleiner als die - prozessbedingt - mit dem Abgas abgeführte Wärme. Beide Wärmeströme lassen sich bei stationären Anlagen für Heizzwecke nutzen (Blockheizkraftwerk).

Literatur

  • Wolfgang Kalide: Kolben und Strömungsmaschinen. 1. Auflage, Carl Hanser Verlag, München Wien, 1974, ISBN 3-446-11752-0
  • Jan Trommelmans: Das Auto und seine Technik. 1. Auflage, Motorbuchverlag, Stuttgart, 1992, ISBN 3-613-01288-X
  • Karl-Heinz Dietsche, Thomas Jäger, Robert Bosch GmbH: Kraftfahrtechnisches Taschenbuch. 25. Auflage, Friedr. Vieweg & Sohn Verlag, Wiesbaden, 2003, ISBN 3-528-23876-3

Siehe auch

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Otto-Prozeß — Der Otto Kreisprozess (auch Gleichraumprozess) ist ein nach dem deutschen Ingenieur Nicolaus August Otto benannter thermodynamischer rechtslaufender Kreisprozess, der Wärme in Arbeit umwandelt (  Wärmekraftmaschine), und dient dabei als… …   Deutsch Wikipedia

  • Seiliger-Prozeß — Abb.1: Druck Volumen Diagramm des Seiliger Prozesses Abb.2: Temperatur Entropie Diagramm des Seiliger Prozesses Der Seiliger Kreisprozess ist ein V …   Deutsch Wikipedia

  • Joule-Prozeß — Der Joule Kreisprozess oder Brayton Kreisprozess ist ein rechtslaufender, thermodynamischer Kreisprozess, der nach dem britischen Physiker James Prescott Joule benannt ist. Er ist ein Vergleichsprozess für den in Gasturbinen und Strahltriebwerken …   Deutsch Wikipedia

  • Pumpen [2] — Pumpen (Bd. 7, s. 275). Schöpfwerke. Eingehende Beschreibung der Schöpf und Bewässerungseinrichtungen im Altertume s.a. [1]. Unreines mit Sand u. dergl. vermischtes Erdöl, welches nicht durch Kolbenpumpen aus dem Bohrloch gefördert werden kann,… …   Lexikon der gesamten Technik

  • Karl-Heinz Brodbeck — (* 15. Dezember 1948 in Wertingen) ist ein deutscher Philosoph, Kreativitätsforscher, Ökonom und Wirtschaftsethiker. Er ist Professor für Volkswirtschaftslehre, Statistik und Kreativitätstechniken an der Fachhochschule in Würzburg und Mitglied… …   Deutsch Wikipedia

  • Karl Heinz Brodbeck — (* 15. Dezember 1948 in Wertingen) ist ein deutscher Philosoph, Kreativitätsforscher, Ökonom und Wirtschaftsethiker. Er ist Professor für Volkswirtschaftslehre, Statistik und Kreativitätstechniken an der Fachhochschule in Würzburg und Mitglied… …   Deutsch Wikipedia

  • Erfindung — Abdampfen, Vakuumapparat, von Howard1812 Achromatische Linse von Dollond1757 Akkumulator von Armstrong1843 Akkumulator, elektrischer, ausgeführt von Planté1860 Alizarin, künstlich dargestellt von Gräbe und Liebermann1868 Alkoholometer,… …   Meyers Großes Konversations-Lexikon

  • Brennstoffe — (fuels; combustibles; combustibili) Brennmaterialien, alle zur Heizung (Wärmeentwicklung) verwendeten, in der Natur vorkommenden oder durch chemische und Mischungsprozesse erzeugten Stoffe. Der Hauptverwendungszweck der B. bei Eisenbahnen ist die …   Enzyklopädie des Eisenbahnwesens

  • Separator (Verfahrenstechnik) — Ein Separator (auch Purifikator und Klarifikator genannt, von lat.: separare = trennen, absondern) trennt Stoffe voneinander. Inhaltsverzeichnis 1 Funktionsprinzip 2 Bauarten 3 Anwendung …   Deutsch Wikipedia

  • Liste von Kriegsfilmen — Es ist teilweise umstritten, welche Spielfilme als „Kriegsfilme“ gelten können. Wie im Hauptartikel Kriegsfilm dargelegt, gibt es die Auffassung, nur die Thematisierung moderner Kriege rechtfertige das Etikett „Kriegsfilm“. Hiervon abweichend… …   Deutsch Wikipedia


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.