Durchflussrichtung


Durchflussrichtung

Ein p-n-Übergang bezeichnet einen Materialübergang in Halbleiterkristallen zwischen Bereichen mit unterschiedlicher Dotierung. Bereiche, in denen die Dotierung von negativ (n) zu positiv (p) wechselt, kommen in vielen elektrischen Bauelementen der Halbleitertechnologie vor. Die Besonderheit des p-n-Übergangs ist die Ausbildung zweier Raumladungen (Anreicherung von Ladungsträgern) durch die elektrische Potentialdifferenz zwischen den Akzeptor- und Donatoratomen sowie des entgegengerichteten elektrischen Feldes zwischen den sich nun bildenden Raumladungen (elektrostatisches Gleichgewicht)[1][2]. Der Bereich, der die beiden Raumladungen einschließt, wird Raumladungszone genannt, der Grenzbereich zwischen den Raumladungen wird als Sperrschicht bezeichnet. Die physikalischen Grundlagen dieser Sperrschicht sind also die Drift[3] sowie das coulombsche Gesetz. Die Bedeutung dieser Anordnung liegt darin, dass sie sich bei äußerer elektrischerer Spannungsbeaufschlagung asymmetrisch verhält, d. h., die Ausdehnung der Sperrschicht lässt sich beeinflussen.

Inhaltsverzeichnis

p-n-Übergang im Gleichgewicht

Aufbau einer Sperrschicht (Raumladungszone RLZ) im p-n-Übergang. Die Kreise symbolisieren bewegliche Majoritätsladungsträger (Elektronen (-) und Löcher (+)), die eckigen Figuren stellen Atomrümpfe dar.

Dotierte Halbleiter sind in ihrem Grundzustand ungeladen. Die Verbindung zweier andersartig dotierter Halbleitermaterialien hat allerdings einen Konzentrationsgradienten der enthaltenen frei beweglichen Ladungsträger zur Folge. So werden die Majoritätsladungsträger durch die Diffusionskraft in das jeweils andere Halbleitermaterial gezogen, in denen ihre Konzentration geringer ist (Konzentrationsdiffusion). Das heißt: die Elektronen des n-Kristalls streben in den p-Kristall, die Löcher des p-Kristalls umgekehrt in den n-Kristall. Aufgrund dieser Diffusion fehlen nun Ladungsträger in den zuvor ungeladenen Materialien. Dies resultiert in einem elektrischen Feld, welches eine Kraft auf die Ladungsträger ausübt. Die dadurch verursachte Driftbewegung ist der durch Diffusion verursachten Bewegung entgegengerichtet und es stellt sich ein Gleichgewicht zwischen Diffusion und elektrischer Feldkraft ein.

Wegen der Rekombination der Ladungsträger bildet sich in beiden Kristalltypen eine Verarmungszone (Raumladungszone, RLZ) aus. Die Ausdehnung dieser Verarmungszone, oder Sperrschicht, ist abhängig von der Dotierung der Zone und der intrinsischen Ladungsträgerdichte des Materials. Bei gleich hoher Dotierungsdichte in p- und n-Gebiet ist die Raumladungszone symmetrisch. Bei ungleichen Dotierungsdichten breitet sich die RLZ weiter in das weniger stark dotierte Gebiet aus.

Betrachtet man das Bändermodell dieser Anordnung, so haben sich durch den Diffusionsprozess die Fermi-Niveaus der beiden Kristalle angeglichen und es zeigt sich eine Krümmung der Energiebänder (Valenzband und Leitungsband) im Bereich des p-n-Übergangs. Die zuvor elektrisch neutralen Kristalle haben durch die zurückbleibenden, festen Ladungen nunmehr eine Raumladung erhalten, die den p-Kristall negativ, den n-Kristall positiv auflädt. Die dadurch entstandene Spannung wird Diffusionsspannung ΦD oder (englisch) Built-In-Spannung Vbi genannt. Sie ist abhängig von Dotierung und Material. Bestehen die Schichten aus Silizium, so beträgt die Diffusionsspannung für typische Dotierungen ca. 0,6 bis 0,7 V. Für die Ladungsträger stellt die Krümmung der Energiebänder einen Potentialwall von der Energie \Phi_D\cdot e dar. Die Elektronen und Löcher müssten diesen Wall überwinden, um in den jeweils anderen Teil zu gelangen. Dafür benötigen sie Energie.

p-n-Übergang bei angelegter elektrischer Spannung

Die Energie zum Überwinden des Potentialwalls kann in Form elektrischer Energie zugeführt werden. Diese Energie vergrößert entweder den Potentialwall oder verkleinert ihn.

Durch Anlegen einer äußeren Spannung in Sperrrichtung (+ am n-Kristall, − am p-Kristall) wird das Feld der Sperrschicht verstärkt und die Ausdehnung der Raumladungszone vergrößert. Elektronen und Löcher werden von der Sperrschicht weg gezogen. Es fließt nur ein sehr geringer Strom, erzeugt durch Minoritätsladungsträger (Sperrstrom).

Bei Polung in Durchlassrichtung (+ am p-Kristall, − am n-Kristall) wird der Potenzialwall abgebaut. Neue Ladungsträger fließen von der äußeren Quelle auf die Sperrschicht zu und rekombinieren hier fortwährend. Bei ausreichender angelegter Spannung fließt ein signifikanter elektrischer Strom.

Anwendung

Wie oben gezeigt, leitet der einfache p-n-Übergang elektrischen Strom in eine Richtung sehr gut, in die andere fast nicht. Eine solche Anordnung nennt man Diode (Halbleiterdiode). Eine wichtige Anwendung der Diode ist daher der Gleichrichter zur Umwandlung von Wechselstrom in Gleichstrom. Eine Sonderform der Diode ist die Fotodiode sowie die Solarzelle. Bei diesen wird die entgegengesetzte elektrische Polarisation der Raumladungszone verwendet, um generierte Elektron-Loch-Paare zu trennen. Fotodioden werden daher in Sperrrichtung betrieben. Dadurch hebt sich die Wirkung des Widerstandes auf, und der p-n-Übergang verliert seinen Einfluss auf die Elektron-Loch-Paare.

Auch die meisten übrigen Halbleiterbauelemente beinhalten in klassischer Bauweise einen oder mehrere p-n-Übergänge zur Erzielung ihrer Funktion, z. B. im Bipolartransistor, Feldeffekttransistor (FET), MOS-FET, Halbleiterdetektor usw.

Berechnung

Die Weite der Raumladungszone in Abhängigkeit von der Donator- ND und Akzeptordotierung NA berechnet sich bei vollständiger Ionisierung der Dotieratome nach Shockley zu

 W(U)= \sqrt{\frac{2 \cdot \varepsilon_r \cdot \varepsilon_0}{q} \left( \frac{1}{N_A}+\frac{1}{N_D} \right) (\Phi_D - U)},

wobei \varepsilon_0 die Permittivität des Vakuums, \varepsilon_r die relative Permittivität, ΦD die sich einstellende Diffusionsspannung am p-n-Kontakt, q die Elektronenladung und U die Spannung über der Diode ist.

Einzelnachweise

  1. Rudolf Müller: Grundlagen der Halbleiter-Elektronik. 5. Auflage. Springer-Verlag, Berlin 1987. ISBN 3-540-18041-9, S. 23
  2. Joachim Rudolf: Knaurs Buch der modernen Chemie. Droemersche Verlagsanstalt, München 1971, S. 67, S. 74
  3. 'Rudolf Müller: Grundlagen der Halbleiter-Elektronik. 5. Auflage. Springer-Verlag, Berlin 1987. ISBN 3-540-18041-9, S. 45

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Schaumzumischer — Zumischer mit B Anschluss Der Schaummittel Zumischer ist eine Armatur, die zum Erzeugen von Löschschaum verwendet wird. Der Zumischer saugt dabei das Schaummittel an und vermischt es in einem bestimmten Verhältnis mit dem Löschwasser. Die… …   Deutsch Wikipedia

  • Ultraschall-Durchflussmesser — (USD) messen die Geschwindigkeit eines strömenden Mediums (Gas, Flüssigkeit) mit Hilfe akustischer Wellen. Diese Durchflussmesseinrichtung besteht aus zwei Teilen. Dem eigentlichen Messaufnehmer (Ultraschallsensor) und einem Auswerte und… …   Deutsch Wikipedia

  • Ultraschall-Durchflussmessgerät — Ultraschall Durchflussmesser Ultraschall Durchflussmesser (USD) messen die Geschwindigkeit eines strömenden Mediums (Gas, Flüssigkeit) mit Hilfe akustischer Wellen. Diese Durchflussmesseinrichtung besteht aus zwei Teilen. Dem eigentlichen… …   Deutsch Wikipedia

  • Ultraschall-Durchflusssensor — Ultraschall Durchflussmesser Ultraschall Durchflussmesser (USD) messen die Geschwindigkeit eines strömenden Mediums (Gas, Flüssigkeit) mit Hilfe akustischer Wellen. Diese Durchflussmesseinrichtung besteht aus zwei Teilen. Dem eigentlichen… …   Deutsch Wikipedia

  • Ultraschalldurchflussmesser — Ultraschall Durchflussmesser Ultraschall Durchflussmesser (USD) messen die Geschwindigkeit eines strömenden Mediums (Gas, Flüssigkeit) mit Hilfe akustischer Wellen. Diese Durchflussmesseinrichtung besteht aus zwei Teilen. Dem eigentlichen… …   Deutsch Wikipedia

  • Ultraschalldurchflussmessgerät — Ultraschall Durchflussmesser Ultraschall Durchflussmesser (USD) messen die Geschwindigkeit eines strömenden Mediums (Gas, Flüssigkeit) mit Hilfe akustischer Wellen. Diese Durchflussmesseinrichtung besteht aus zwei Teilen. Dem eigentlichen… …   Deutsch Wikipedia

  • Ultraschalldurchflusssensor — Ultraschall Durchflussmesser Ultraschall Durchflussmesser (USD) messen die Geschwindigkeit eines strömenden Mediums (Gas, Flüssigkeit) mit Hilfe akustischer Wellen. Diese Durchflussmesseinrichtung besteht aus zwei Teilen. Dem eigentlichen… …   Deutsch Wikipedia

  • Vortex-Durchflussmesser — Wirbeldurchfluss Messsystem Der Vortex Durchflussmesser (VDM) ist ein Durchflussmessgerät zur Bestimmung von Volumen oder Massenströmen auf Basis der Kármánschen Wirbelstraße[1]. Vortex Durchflussmesser gehören heute zu den Standard Messgeräten… …   Deutsch Wikipedia

  • Wirbeldurchflussmesser — Wirbeldurchfluss Messsystem Der Vortex Durchflussmesser (VDM) ist ein Durchflussmessgerät zur Bestimmung von Volumen oder Massenströmen auf Basis der Kármánschen Wirbelstraße[1]. Vortex Durchflussmesser gehören heute zu den Standard Messgeräten… …   Deutsch Wikipedia

  • Wirbeldurchflussmessung — Wirbeldurchfluss Messsystem Der Vortex Durchflussmesser (VDM) ist ein Durchflussmessgerät zur Bestimmung von Volumen oder Massenströmen auf Basis der Kármánschen Wirbelstraße[1]. Vortex Durchflussmesser gehören heute zu den Standard Messgeräten… …   Deutsch Wikipedia