Emulgiert

Emulgiert

Unter einer Emulsion versteht man ein fein verteiltes Gemisch zweier normalerweise nicht mischbarer Flüssigkeiten ohne sichtbare Entmischung. Beispiele für Emulsionen sind zahlreiche Kosmetika, Milch und Mayonnaise.

Inhaltsverzeichnis

Struktur der Emulsion

In einer Emulsion liegt ein fein verteiltes Gemisch zweier Flüssigkeiten, wie Öl und Wasser, vor. Eine Flüssigkeit (Phase) bildet kleine Tröpfchen, verteilt in der anderen Flüssigkeit. Die Phase, die Tröpfchen bildet, nennt man innere Phase oder auch disperse Phase. Die Phase, in der die Tröpfchen "schwimmen", wird äußere Phase oder kontinuierliche Phase genannt. Emulsionen gehören zu den dispersen Systemen und unterscheiden sich von Gemischen mischbarer Flüssigkeiten, wie zum Beispiel Ethanol und Wasser. Emulsionen sind in der Regel trübe, milchige Flüssigkeiten.

Emulsionen aus Wasser und Öl unterscheidet man in Wasser-in-Öl-Emulsion (W/O-Emulsion) und Öl-in-Wasser-Emulsion (O/W-Emulsion). Ein weiterer wichtiger Bestandteil von Emulsionen ist der Emulgator (= Tensid), der die Bildung von Tröpfchen erleichtert und einer Entmischung (Phasentrennung) entgegenwirkt.

Chemische Betrachtung einer Emulsion

Abb.1: Grenzfläche und O/W-Emulsion

Viele Flüssigkeiten können entweder gut mit Wasser (sie sind hydrophil) oder können gut mit Öl (sie sind lipophil) mischbar sein. Hydrophile Flüssigkeiten bilden hauptsächlich zwischenmolekulare Kräfte in Form von Wasserstoffbrücken aus. Bei lipophilen Flüssigkeiten bilden sich hingegen hauptsächlich zwischenmolekulare Van-der-Waals-Kräfte aus. Gibt man etwas Öl in Wasser, wird das Öl aufschwimmen. Zwischen Wasser und Öl hat sich eine möglichst kleine Grenzfläche gebildet. (Abb.1a) Zwischen den beiden Phasen können sich die obengenannten Kräfte nicht recht ausbilden. An der Grenzfläche bildet sich hingegen eine Grenzflächenspannung aus. Die Grenzflächenspannung ist der Antrieb eine möglichst kleine Grenzfläche zu bilden und verhindert damit die Existenz einer Emulsion.

Zur Herstellung und Stabilisierung einer Emulsion sind Grenzflächenaktive Substanzen, die Tenside (= Emulgatoren) notwendig. Die Grenzflächenspannung an der Öl-Wasser-Phasengrenzfläche wird durch das Tensid deutlich gesenkt. Sie vermitteln zwischen den beiden Phasen, und haben einen polaren (hydrophilen) und einen unpolaren (lipophilen) Teil. Der polare Teil kann Wasserstoffbrücken ausbilden und sich mit hydrophilen Stoffen verbinden, während der unpolare Teil des Moleküls Van-der-Waals-Kräfte ausbildet und sich mit lipophilen Stoffen verbindet.

Emulsionen sind trotzdem instabile Systeme, haben also eine begrenzte Lebensdauer. Das so genannte "Brechen der Emulsion" erfolgt, da die Größe der Grenzflächen durch Zusammenfließen von Tröpfchen zu größeren Tröpfchen verringert wird. (-> Stabilität von Emulsionen)

Physikalische Betrachtung

Die wichtigsten Größen bei der Betrachtung von Emulsionen sind das Phasenvolumenverhältnis (der Quotient aus dem Volumen der inneren Phase zu jedem der äußeren), die mittlere Teilchengröße (Dm), sowie die Teilchengrößenverteilung.

Phasenvolumenverhältnis

Bis zu einem Phasenvolumenverhältnis von 0,3/0,7 (30% innere Phase, 70% äußere Phase) hängen die Eigenschaften der Emulsion im wesentlichen von den Eigenschaften der äußeren Phase ab. Die Tröpfchen können sich fast unabhängig voneinander in der äußeren Phase bewegen und auch die Viskosität entspricht ungefähr jener der äußeren Phase.

Mit steigendem Phasenvolumenverhältnis kommen die Eigenschaften der inneren Phase deutlich mehr zum Tragen. Wird der Volumenanteil der inneren Phase zu hoch, so kann die Phasenlage umschlagen. Eine O/W-Emulsion wird zu einer W/O-Emulsion und umgekehrt. Man spricht von einer sogenannten Phaseninversion. Zur Inversion einer O/W-Emulsion kann es auch durch Temperaturerhöhung kommen, da höhere Temperaturen die hydrophilen Wechselwirkungen des Emulgators mit dem Wasser schwächen, so dass die lipophilen Wechselwirkungen relativ gestärkt werden. Somit lässt sich eine energetisch günstigere Situation im System vorfinden, indem die Ölphase die kontinuierliche Phase bildet, in der die Wasserphase emulgiert vorliegt.

Siehe hierzu auch: Hochkonzentrierte Emulsionen

Tröpfchengröße

Emulsionen sind niemals monodispers, vielmehr sind die Tröpfchengrößen innerhalb einer gewissen Spanne verteilt (siehe auch Dispersitätsanalyse). Deshalb lassen sich in einer Emulsion höhere Raumerfüllungen realisieren, als dies in einer monodispersen, hexagonal dichtesten Packung möglich wäre. Zwischenräume zwischen den größeren Tropfen werden dabei mit kleineren Tröpfchen aufgefüllt. Der mittlere Teilchendurchmesser (Dm) in Emulsionen liegt normalerweise zwischen 100 Nanometer und 1 Millimeter. Je größer der mittlere Teilchendurchmesser und je breiter die Teilchengrößenverteilung, desto stärker ist die milchig-weiße Trübung der Emulsion. Emulsionen wie zum Beispiel Milch wirken im Auflicht bläulich, im Durchlicht teils deutlich rot.

Stabilität von Emulsionen

Emulsionen sollen meist für einen bestimmten Zeitraum (zwischen wenigen Stunden und einigen Jahren) und unter bestimmten Bedingungen (Temperaturbereich, pH-Bereich) erhalten bleiben. Zerfällt eine Emulsion, so geschieht dies in einzelnen, oft jedoch auch gleichzeitig ablaufenden Phasen.

  1. Phase: Stabile Emulsion
    beispielsweise Fetttröpfchen sind in der äußeren Phase (Wasser) dispergiert.
  2. Phase: Aufrahmung oder Sedimentation (reversibel)
    aufgrund der Gravitationskraft erfolgt eine Trennung der gemischten Phasen in die spezifisch leichtere und die spezifisch schwerere.
  3. Phase: Ostwald-Reifung (Ripening)
  4. Phase: Aggregation (reversibel)
    die Fetttröpfchen bilden Aggregate, der Teilchendurchmesser wird vergrößert und nach dem Stokes'schen Gesetz erhöht sich die Sedimentationsgeschwindigkeit der dispergierten Fetttröpfchen.
  5. Phase: Koaleszenz
    die Fetttröpfchen vereinigen sich; dies kann im Extremfall zum Brechen der Emulsion führen.

Herstellung von Emulsionen

Durch die Verkleinerung der Tropfen bei der Herstellung einer Emulsion erhöht sich die Grenzfläche zwischen den beiden Phasen. Dabei muss die Grenzflächenspannung überwunden werden und eine neue Grenzfläche geschaffen werden. Dies erfordert Arbeit, die mechanisch in das System eingebracht werden muss. Durch dabei auftretende Scherkräfte werden die Tröpfchen immer kleiner.

Tenside (Emulgatoren)

Durch Tenside, die häufig auch als Emulgatoren bezeichnet werden, lassen sich die Grenzflächenspannungen drastisch senken. Das Tensid soll verhindern, dass die neu entstandenen Tröpfchen wieder koaleszieren (= zusammenfließen). Dazu muss er möglichst schnell an die neue Grenzfläche diffundieren. Synthetische Tenside schaffen dies in einigen Millisekunden. Große Tensidmoleküle, die noch dazu die Viskosität deutlich erhöhen (z.B. Stärke) benötigen einige Minuten bis zu einer halben Stunde, um den neuen Tropfen vollständig zu umhüllen. Eine höhere Viskosität hat jedoch auch einen stabilisierenden Einfluss, da die Bewegung der Tröpfchen und somit die Möglichkeit einer Koaleszenz erschwert wird.

Eine genauso zu beachtende Eigenschaft bei der Auswahl eines geeigeneten Tensids ist seine Spreitungsgeschwindigkeit (=Ausbreitungsgeschwindigkeit). Die Grenzfläche eines neuen Tropfens ist zunächst nur teilweise von Tensid belegt. Dieser spreitet nun zu jenem Teil der Grenzfläche, der zunächst noch unbelegt war. So entsteht zunächst ein Tensidkonzentrations-Gradient an der Grenzfläche, der je nach Spreitungsgeschwindigkeit mehr oder weniger schnell zu einer gleichmäßigen Tensidverteilung ausgeglichen wird. Weil die Konzentration des Tensids an der Grenzfläche aber insgesamt zu gering ist (größere Grenzfläche benötigt mehr Emulgator), müssen Tensidmoleküle nachdiffundieren, bis ein Konzentrationsmaximum erreicht wird.

Normalerweise bleibt jene Phase, in der sich der Emulgator besser löst, die äußere Phase. Bei einem HLB-Wert von 3 bis 6 wird die Emulsion eine W/O-Emulsion, von 8 bis 18 eine O/W-Emulsion (Bancroft-Regel). Die benötigte Menge an Tensid hängt im wesentlich von der gewünschten Tröpfchengröße (kleinere Tröpfchen -> mehr Oberfläche -> mehr Tensid) und dem Phasenvolumenverhältnis ab. Fast immer liegt die Tensidkonzentration deutlich oberhalb des entsprechenden Mizellbildungspunktes cmc (engl.: critical micelle concentration).

Feststoffstabilisatoren

Eine Emulsion kann auch durch den Zusatz bestimmter Feststoffe stabilisiert werden. Senfpulver wird z.B. schon seit langem zur Stabilisierung von Mayonnaise eingesetzt. Feststoffstabilisierte Emulsionen werden nach ihrem Entdecker S.U. Pickering (der 1907 zeigte, dass kleine Teilchen, die von Wasser besser als von Öl benetzt werden, O/W-Emulsionen stabilisieren können) oft Pickering-Emulsionen genannt. Wichtig für eine ausreichende Stabilisierung ist, dass sich ein mechanisch stabiler Feststoffilm um die dispergierte Phase bilden kann.

Feststoffeigenschaften

Es sollten folgende Eigenschaften des Festkörpers erfüllt sein:

  • der Feststoff sollte ein feinteiliges Pulver sein
  • die Feststoffteilchen sollten möglichst dicht gepackt sein
  • für den Phasenkontaktwinkel zwischen Wasser und Öl an der Teilchenoberfläche muss gelten 0^\circ\; < \theta \; < 180^\circ\;, da ansonsten die Teilchen entweder komplett in die Wasser- oder komplett in die Ölphase gezogen werden und somit keinen Film an der Oberfläche mehr bilden.
  • die Teilchen sollten eine möglichst rauhe Oberfläche aufweisen

Bei einem Phasenkontaktwinkel von weniger als 90° entstehen bis auf wenige Ausnahmen O/W-Emulsionen, ist er größer als 90°, entstehen meist W/O-Emulsionen. Ist der Phasenkontaktwinkel genau 90°, so liegt keine Krümmung des Flüssigkeitsmeniskus vor. Experimente haben gezeigt, dass diese Krümmung für die Stabilität jedoch eine oft unterschätzte Rolle spielt.

Vorteile einer feststoffstabilisierten Emulsion

  1. die Emulsion ist meist resistenter gegen Änderungen des chemischen Milieus (pH-Wert, Salzkonzentration etc.)
  2. die Tensidkonzentration in der Emulsion kann stark gesenkt werden
  3. es können andere Emulgatoren verwendet werden als in einer herkömmlichen Emulsion
  4. die Phasenlage kann entgegengesetzt derjenigen einer herkömmlichen Emulsion gleicher Zusammensetzung sein
  5. die rheologischen Eigenschaften der Emulsion können stark verändert sein. (Newton'sch, Nicht-Newton'sch, ohne oder mit Fließgrenze)

Geräte

Um die für die Emulgierung benötigte Arbeit in das Medium einzutragen, gibt es eine ganze Reihe an möglichen Methoden:

  1. Fantaschale und Pistill
  2. schnelle Rührwerke
  3. Hochdruckhomogenisatoren
  4. Schüttler
  5. Vibrationsmischer
  6. Ultraschallgeneratoren
  7. Emulgierzentrifugen
  8. Kolloidmühlen
  9. Zerstäuber

Mikroemulsionen

In einer Mikroemulsion liegen keine besonders kleinen Tröpfchen vor, sondern es handelt sich um Wasser-Öl-Tensid-Gemische, die im Gegensatz zu anderen Emulsionen thermodynamisch stabil sind. Sie sind optisch transparent und bilden sich ohne die für die Herstellung von Emulsionen sonst nötige hohe Energiezufuhr. Meist benötigt man zur Darstellung einer Mikroemulsion Cotenside oder Cosolventien. Nur in bestimmten Bereichen der Phasendiagramme für drei bzw. vier Komponenten können Mikroemulsionen entstehen. Sie können wie herkömmliche Emulsionen bei Änderung des Phasenvolumenverhältnisses umschlagen.

Multiple Emulsion

Außerdem gibt es noch multiple Emulsionen (W/O/W bzw. O/W/O). Multiple Emulsionen können u.a. zur Flüssigmembran-Permeation genutzt werden, bei der die mittlere Phase (Membranphase) als Filter zwischen innerer und äußerer Phase dient. Anwendungen sind der Stoffeinschluss in die innere W- oder O-Phase und die kontrollierte Freisetzung von speziellen biologisch aktiven Stoffen aus der inneren Phase im Lebensmittel-, Kosmetik- und Pharmabereich. Weiterhin können diese über den Anteil einer wässrigen Phase in der O-Phase zur Herstellung fettreduzierter Lebensmittelemulsionen genutzt werden.

Fotoemulsion

In der Fotografie bezeichnet man die auf einen Schichtträger aufgebrachte lichtempfindliche Schicht gemeinhin als Fotoemulsion. Im oben bezeichneten Sinne handelt es sich dabei aber um keine Emulsion, sondern um eine erstarrte Suspension.

Literatur

  • Schubert H., Emulgiertechnik, Behr's Verlag, Hamburg, 2005, ISBN 3-89947-086-9
  • Lagaly G., Schulz O., Zimehl R., Dispersionen und Emulsionen, Steinkopff Verlag, Darmstadt, 1997, ISBN 3-7985-1087-3
  • Dobiáš, B., Emulsionen (Bd1, Bd2) , Tenside Detergents, 1978, 1979
  • Asche H. (Hrsg.), Technologie von Salben, Suspensionen und Emulsionen. Ein Seminar der APV vom 20. - 22. September 1982 in Darmstadt, Wissenschaftlich Verlagsgesellschaft, Stuttgart, 1984
  • Muschiolik G./Bunjes H.(Hrsg.), "Multiple Emulsionen - Herstellung und Eigenschaften", BEHR´s Verlag, 2007, ISBN 978-3-89947-339-1

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Cholesterin — Strukturformel Allgemeines Name Cholesterin …   Deutsch Wikipedia

  • Cholesterinspiegel — Strukturformel Allgemeines Name Cholesterin Andere Namen …   Deutsch Wikipedia

  • Cholesterol — Strukturformel Allgemeines Name Cholesterin Andere Namen …   Deutsch Wikipedia

  • Kolloidosom — Als Kolloidosome werden in der Biochemie wirkstoffdurchlässige Kapseln bezeichnet, die aus Kolloid Teilchen bestehen. Der Terminus ist eine Wortbildung, die sich an den Begriff der Liposome (Kapseln aus fettähnlichen Doppelschichten) anlehnen… …   Deutsch Wikipedia

  • Milchröhren — Unter Milchsaft oder Chylus versteht man das von manchen Organismen Taxa gebildete flüssige Sekret, das im Pflanzenkörper in Milchröhren oder in den Hyphen von Pilzen gebildet und transportiert wird. Der Name des Milchsaftes rührt von seinem… …   Deutsch Wikipedia

  • Milchsaft — Unter Milchsaft oder Chylus versteht man das von manchen Organismen Taxa gebildete flüssige Sekret, das im Pflanzenkörper in Milchröhren oder in den Hyphen von Pilzen gebildet und transportiert wird. Der Name des Milchsaftes rührt von seinem… …   Deutsch Wikipedia

  • Milchsaftröhre — Unter Milchsaft oder Chylus versteht man das von manchen Organismen Taxa gebildete flüssige Sekret, das im Pflanzenkörper in Milchröhren oder in den Hyphen von Pilzen gebildet und transportiert wird. Der Name des Milchsaftes rührt von seinem… …   Deutsch Wikipedia

  • Milchsaftröhren — Unter Milchsaft oder Chylus versteht man das von manchen Organismen Taxa gebildete flüssige Sekret, das im Pflanzenkörper in Milchröhren oder in den Hyphen von Pilzen gebildet und transportiert wird. Der Name des Milchsaftes rührt von seinem… …   Deutsch Wikipedia

  • Polymerisation — Po|ly|me|ri|sa|ti|on 〈f. 20; Chem.〉 Zusammentritt von mehreren Molekülen eines Stoffes zu einer neuen Verbindung, deren Molekulargewicht ein ganzzahliges Vielfaches von dem des Ausgangsstoffes beträgt; Sy Polymerisierung * * *… …   Universal-Lexikon

  • Lebensmittel und ihre Herstellung —   Was sind eigentlich Lebensmittel? Man versteht darunter alle Stoffe, die zum Verzehr, zum Essen oder Trinken also, geeignet sind. Eine wenn auch nicht strenge Unterscheidung lässt sich durch die Begriffe Nahrungs und Genussmittel treffen. Die… …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”