Euklidischer Ring


Euklidischer Ring

Euklidischer Ring ist ein Fachbegriff aus der Mathematik und bezeichnet einen Ring, in dem eine (verallgemeinerte) Division mit Rest vorhanden ist, wie man sie von den ganzen Zahlen kennt. Die Möglichkeit der Division mit Rest wird dabei durch die Existenz einer geeigneten Bewertungsfunktion gesichert.

Inhaltsverzeichnis

Definitionen

Es gibt in der Literatur und in der akademischen und wissenschaftlichen Praxis eine ganze Reihe verschiedener, aber ähnlicher Definitionen eines euklidischen Ringes. Oft sind darin bereits speziellere Eigenschaften enthalten, was z. B. Erleichterungen in der Formulierung der im Weiteren aufgespannten Theorie bringen kann. All diesen Definitionsvarianten ist jedoch gemeinsam, dass in einem euklidischen Ring eine Division mit Rest und damit ein euklidischer Algorithmus zur Bestimmung des größten gemeinsamen Teilers (ggT) zweier Ringelemente möglich ist. Von dieser Eigenschaft ist der Name abgeleitet.

Variante 1

Ein Integritätsring R (auch als Integritätsbereich bezeichnet, also ein kommutativer, nullteilerfreier Ring mit 1) heißt euklidischer Ring, falls eine Bewertungsfunktion g\colon R\setminus\{0\}\to \N_0 mit folgenden Eigenschaften existiert:

  • für alle x,y \in R mit  y \neq 0 existieren Elemente q,r \in R mit x = qy + r (Division mit Rest), wobei entweder r = 0 oder g(r) < g(y) ist, und
  • für x,y \in R\setminus\{0\} gilt stets g(xy)\ge g(x).

Die Bewertungsfunktion g heißt dann auch euklidische Normfunktion (euklidischer Betrag) des Ringes.

Variante 2

Die obenstehende Definition ist fast äquivalent zu der folgenden, ebenfalls häufig verwendeten, in der jedoch zusätzlich eine Bewertung für die Null vorgegeben wird.

Definition:
Ein Integritätsring R heißt euklidischer Ring, falls eine Bewertungsfunktion g:R\to\N_0 existiert mit folgenden Eigenschaften:

  • g(0) = 0,
  • für alle x,y \in R mit  y \neq 0 existieren Elemente q,r \in R mit x = qy + r (Division mit Rest), wobei g(r) < g(y) ist, und
  • für x,y \in R\setminus\{0\} gilt stets g(xy)\ge g(x).

Variante 3

Es gibt auch noch eine weitere wesentlich allgemeinere, aber seltener verwendete Variante, in der die Bewertungsfunktion reellwertig ist.

Definition[1]:
Ein Integritätsring R heißt euklidischer Ring, falls eine Wertefunktion (bzw. Bewertungsfunktion) g:R\setminus\{0\}\to \R existiert mit folgenden Eigenschaften:

  • für alle x,y \in R mit  y \neq 0 existieren Elemente q,r \in R mit x = qy + r (Division mit Rest), wobei entweder r = 0 oder g(r) < g(y) ist, und
  • zu gegebenem s \in \R gibt es höchstens endlich viele reelle Zahlen wi aus dem Wertebereich W\stackrel{\mathrm{def}}=\{ g(a) \ | \ a \in R\setminus\{0\}  \} von g, die kleiner sind als s. Formaler: \exists n \in \N: \operatorname{card}\{w_i \in W | w_i < s\}=n.

Variante 4

Ein andere schwache Variante liefert die folgende

Definition[2]:
Ein Integritätsring R (hier nur: ein kommutativer, nullteilerfreier Ring mit wenigstens einem von Null verschiedenem Element) heißt euklidischer Ring, falls eine Gradfunktion g:R\setminus\{0\}\to \N_0 existiert mit folgenden Eigenschaften:

  • für alle x,y \in R mit  y \neq 0 existieren Elemente q,r \in R mit x = qy + r (Division mit Rest), wobei entweder r = 0 oder g(r) < g(y) ist.

Eigenschaften

  • Assoziierte Elemente werden identisch bewertet, insbesondere sind die Einheiten die minimal bewerteten Elemente des Rings.
  • Es lässt sich zeigen, dass jeder euklidische Ring eine minimale euklidische Norm besitzt; weiter existiert ein Algorithmus zur iterativen Bestimmung des minimalen euklidischen Betrages in einem euklidischen Ring. Das Finden einer geschlossenen Form für den minimalen euklidischen Betrag ist jedoch im allgemeinen sehr aufwändig.
  • Jeder euklidische Ring ist ein Hauptidealring, denn wenn a ein minimal bewertetes Element eines Ideals I ist, so ist I = (a), also ein Hauptideal. Insbesondere ist jeder euklidische Ring faktoriell.

Beispiele für euklidische und nicht euklidische Ringe

  • Der Ring \mathbb{Z} der ganzen Zahlen ist ein euklidischer Ring. Die natürlichste Wahl für einen euklidischen Betrag ist g:\mathbb{Z}\to\mathbb{N}, x \mapsto |x|. Der minimale euklidische Betrag einer ganzen Zahl ist gegeben durch die Länge der Binärdarstellung ihres Absolutbetrages.
  • Jeder Körper K ist ein euklidischer Ring mit dem euklidischen Betrag a\mapsto 1 - \delta_{0,a}, wobei δ das Kronecker-Delta bezeichnet. Dieser Betrag ist auch minimal.
  • Der Polynomring K[X] über einem Körper K in einer Variablen X ist ein euklidischer Ring, wobei die euklidische Norm durch den Grad eines Polynoms gegeben ist; dies ist bereits die minimale euklidische Norm.
  • Dagegen ist z. B. der Polynomring \mathbb{Z}[X] kein euklidischer Ring, da das Ideal (X,2) kein Hauptideal ist.
  • Der Ring \mathbb{Z}[i] der gaußschen Zahlen mit g:\mathbb{Z}[i]\to \mathbb{N} erklärt durch (a+bi)\mapsto a^{2}+b^{2} ist ein euklidischer Ring.
  • Jedoch ist der Ring \mathbb{Z}[\sqrt{-3}] nicht euklidisch, da 2+2\sqrt{-3} und 4 keinen ggT haben (zwei "maximale gemeinsame Teiler" sind 1+\sqrt{-3} und 2, die aber teilerfremd sind).
  • \mathbb{Z}[d] ist u.a. euklidisch für d \in \{\sqrt{-2},\sqrt{-1}, \sqrt{1}, \sqrt{2}, \sqrt{3} \}
  • Die Hurwitzquaternionen sind ein Beispiel für einen nicht-kommutativen Ring, der mit seiner Norm als euklidischer Norm sowohl links- als auch rechtseuklidisch ist.

Einzelnachweise

  1. Bernhard Hornfeck: Algebra. 3. Auflage, deGruyter 1976. ISBN 3-11-006784-6, S. 142
  2. Kurt Meyberg: Algebra – Teil 1, Carl Hanser Verlag München, Wien.

Literatur


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • euklidischer Ring —   [nach Euklid], ein Integritätsbereich I mit einer Abbildung f, die jedem von null verschiedenen Element eine nichtnegative ganze Zahl zuordnet, wobei gilt: 1) Sind a und b aus I, mit a ≠ …   Universal-Lexikon

  • Euklidischer Körper — Ein euklidischer Körper ist ein Körper (im Sinne der Algebra), der ein geordneter Körper ist und in dem jedes nichtnegative Element eine Quadratwurzel hat. Jeder reell abgeschlossene Körper ist euklidisch und jeder euklidische Körper ist ein… …   Deutsch Wikipedia

  • Euklidischer Algorithmus — Der euklidische Algorithmus ist ein Algorithmus aus dem mathematischen Teilgebiet der Zahlentheorie. Mit ihm lässt sich der größte gemeinsame Teiler zweier natürlicher Zahlen berechnen. Das Verfahren ist nach dem griechischen Mathematiker Euklid… …   Deutsch Wikipedia

  • Euklid'scher Ring — Euklidischer Ring ist ein Fachbegriff aus der Mathematik und bezeichnet einen Ring, in dem eine (verallgemeinerte) Division mit Rest vorhanden ist, wie man sie von den ganzen Zahlen kennt. Die Möglichkeit der Division mit Rest wird dabei durch… …   Deutsch Wikipedia

  • Euklidscher Ring — Euklidischer Ring ist ein Fachbegriff aus der Mathematik und bezeichnet einen Ring, in dem eine (verallgemeinerte) Division mit Rest vorhanden ist, wie man sie von den ganzen Zahlen kennt. Die Möglichkeit der Division mit Rest wird dabei durch… …   Deutsch Wikipedia

  • Kommutativer Ring — Ring berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie ist Spezialfall von additive Abelsche Gruppe multiplikative Halbgruppe …   Deutsch Wikipedia

  • Unitärer Ring — Ring berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie ist Spezialfall von additive Abelsche Gruppe multiplikative Halbgruppe …   Deutsch Wikipedia

  • Ggt-Ring — Der größte gemeinsame Teiler (ggT) und das kleinste gemeinsame Vielfache (kgV) sind zwei zusammengehörende mathematische Begriffe. Sie spielen unter anderem in der Bruchrechnung und der Zahlentheorie eine Rolle. Der größte gemeinsame Teiler… …   Deutsch Wikipedia

  • Erweiterter Euklidischer Algorithmus — Der erweiterte euklidische Algorithmus ist ein Algorithmus aus dem mathematischen Teilgebiet der Zahlentheorie. Er berechnet neben dem größten gemeinsamen Teiler zweier natürlicher Zahlen a und b noch zwei ganze Zahlen s und t, die die folgende… …   Deutsch Wikipedia

  • Erweiterter euklidischer Algorithmus — Der erweiterte euklidische Algorithmus ist ein Algorithmus aus dem mathematischen Teilgebiet der Zahlentheorie. Er berechnet neben dem größten gemeinsamen Teiler zweier natürlicher Zahlen a und b noch zwei ganze Zahlen s und t, die die folgende… …   Deutsch Wikipedia